
Deep Learning Toolbox™
Getting Started Guide

Mark Hudson Beale
Martin T. Hagan
Howard B. Demuth

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Deep Learning Toolbox™ Getting Started Guide
© COPYRIGHT 1992–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
June 1992 First printing
April 1993 Second printing
January 1997 Third printing
July 1997 Fourth printing
January 1998 Fifth printing Revised for Version 3 (Release 11)
September 2000 Sixth printing Revised for Version 4 (Release 12)
June 2001 Seventh printing Minor revisions (Release 12.1)
July 2002 Online only Minor revisions (Release 13)
January 2003 Online only Minor revisions (Release 13SP1)
June 2004 Online only Revised for Version 4.0.3 (Release 14)
October 2004 Online only Revised for Version 4.0.4 (Release 14SP1)
October 2004 Eighth printing Revised for Version 4.0.4
March 2005 Online only Revised for Version 4.0.5 (Release 14SP2)
March 2006 Online only Revised for Version 5.0 (Release 2006a)
September 2006 Ninth printing Minor revisions (Release 2006b)
March 2007 Online only Minor revisions (Release 2007a)
September 2007 Online only Revised for Version 5.1 (Release 2007b)
March 2008 Online only Revised for Version 6.0 (Release 2008a)
October 2008 Online only Revised for Version 6.0.1 (Release 2008b)
March 2009 Online only Revised for Version 6.0.2 (Release 2009a)
September 2009 Online only Revised for Version 6.0.3 (Release 2009b)
March 2010 Online only Revised for Version 6.0.4 (Release 2010a)
September 2010 Tenth printing Revised for Version 7.0 (Release 2010b)
April 2011 Online only Revised for Version 7.0.1 (Release 2011a)
September 2011 Online only Revised for Version 7.0.2 (Release 2011b)
March 2012 Online only Revised for Version 7.0.3 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.0.1 (Release 2013a)
September 2013 Online only Revised for Version 8.1 (Release 2013b)
March 2014 Online only Revised for Version 8.2 (Release 2014a)
October 2014 Online only Revised for Version 8.2.1 (Release 2014b)
March 2015 Online only Revised for Version 8.3 (Release 2015a)
September 2015 Online only Revised for Version 8.4 (Release 2015b)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 10.0 (Release 2017a)
September 2017 Online only Revised for Version 11.0 (Release 2017b)
March 2018 Online only Revised for Version 11.1 (Release 2018a)
September 2018 Online only Revised for Version 12.0 (Release 2018b)
March 2019 Online only Revised for Version 12.1 (Release 2019a)
September 2019 Online only Revised for Version 13 (Release 2019b)
March 2020 Online only Revised for Version 14 (Release 2020a)
September 2020 Online only Revised for Version 14.1 (Release 2020b)
March 2021 Online only Revised for Version 14.2 (Release 2021a)
September 2021 Online only Revised for Version 14.3 (Release 2021b)
March 2022 Online only Revised for Version 14.4 (Release 2022a)
September 2022 Online only Revised for Version 14.5 (Release 2022b)

Getting Started
1

Deep Learning Toolbox Product Description . 1-2

Get Started with Deep Network Designer . 1-3

Try Deep Learning in 10 Lines of MATLAB Code 1-12

Classify Image Using Pretrained Network . 1-14

Get Started with Transfer Learning . 1-16

Create Simple Image Classification Network . 1-26

Create Simple Image Classification Network Using Deep Network
Designer . 1-29

Create Simple Sequence Classification Network Using Deep Network
Designer . 1-34

Shallow Networks for Pattern Recognition, Clustering and Time Series
. 1-41

Shallow Network Apps and Functions in Deep Learning Toolbox 1-41
Deep Learning Toolbox Applications . 1-42
Shallow Neural Network Design Steps . 1-43

Fit Data with a Shallow Neural Network . 1-45
Defining a Problem . 1-45
Fit Data Using the Neural Net Fitting App . 1-45
Fit Data Using Command-Line Functions . 1-54

Classify Patterns with a Shallow Neural Network 1-63
Defining a Problem . 1-63
Classify Patterns Using the Neural Net Pattern Recognition App 1-64
Classify Patterns Using Command-Line Functions 1-70

Cluster Data with a Self-Organizing Map . 1-77
Defining a Problem . 1-77
Cluster Data Using the Neural Net Clustering App 1-77
Cluster Data Using Command-Line Functions . 1-83

Shallow Neural Network Time-Series Prediction and Modeling 1-89
Time Series Networks . 1-89
Defining a Problem . 1-90
Fit Time Series Data Using the Neural Net Time Series App 1-90

v

Contents

Fit Time Series Data Using Command-Line Functions 1-98

Train Shallow Networks on CPUs and GPUs . 1-110
Parallel Computing Toolbox . 1-110
Parallel CPU Workers . 1-110
GPU Computing . 1-111
Multiple GPU/CPU Computing . 1-111
Cluster Computing with MATLAB Parallel Server 1-111
Load Balancing, Large Problems, and Beyond . 1-112

Sample Data Sets for Shallow Neural Networks 1-113

Shallow Neural Networks Glossary

vi Contents

Getting Started

• “Deep Learning Toolbox Product Description” on page 1-2
• “Get Started with Deep Network Designer” on page 1-3
• “Try Deep Learning in 10 Lines of MATLAB Code” on page 1-12
• “Classify Image Using Pretrained Network” on page 1-14
• “Get Started with Transfer Learning” on page 1-16
• “Create Simple Image Classification Network” on page 1-26
• “Create Simple Image Classification Network Using Deep Network Designer” on page 1-29
• “Create Simple Sequence Classification Network Using Deep Network Designer” on page 1-34
• “Shallow Networks for Pattern Recognition, Clustering and Time Series” on page 1-41
• “Fit Data with a Shallow Neural Network” on page 1-45
• “Classify Patterns with a Shallow Neural Network” on page 1-63
• “Cluster Data with a Self-Organizing Map” on page 1-77
• “Shallow Neural Network Time-Series Prediction and Modeling” on page 1-89
• “Train Shallow Networks on CPUs and GPUs” on page 1-110
• “Sample Data Sets for Shallow Neural Networks” on page 1-113

1

Deep Learning Toolbox Product Description
Design, train, and analyze deep learning networks

Deep Learning Toolbox provides a framework for designing and implementing deep neural networks
with algorithms, pretrained models, and apps. You can use convolutional neural networks (ConvNets,
CNNs) and long short-term memory (LSTM) networks to perform classification and regression on
image, time-series, and text data. You can build network architectures such as generative adversarial
networks (GANs) and Siamese networks using automatic differentiation, custom training loops, and
shared weights. With the Deep Network Designer app, you can design, analyze, and train networks
graphically. The Experiment Manager app helps you manage multiple deep learning experiments,
keep track of training parameters, analyze results, and compare code from different experiments. You
can visualize layer activations and graphically monitor training progress.

You can import networks and layer graphics from TensorFlow™ 2, TensorFlow-Keras, and PyTorch®,
the ONNX™ (Open Neural Network Exchange) model format, and Caffe. You can also export Deep
Learning Toolbox networks and layer graphs to TensorFlow 2 and the ONNX model format. The
toolbox supports transfer learning with DarkNet-53, ResNet-50, NASNet, SqueezeNet and many
other pretrained models.

You can speed up training on a single- or multiple-GPU workstation (with Parallel Computing
Toolbox™), or scale up to clusters and clouds, including NVIDIA® GPU Cloud and Amazon EC2® GPU
instances (with MATLAB® Parallel Server™).

1 Getting Started

1-2

Get Started with Deep Network Designer

This example shows how to use Deep Network Designer to adapt a pretrained GoogLeNet network to
classify a new collection of images. This process is called transfer learning and is usually much faster
and easier than training a new network, because you can apply learned features to a new task using a
smaller number of training images. To prepare a network for transfer learning interactively, use Deep
Network Designer.

Extract Data for Training

In the workspace, unzip the data.

unzip('MerchData.zip');

Select a Pretrained Network

Open Deep Network Designer.

deepNetworkDesigner

Load a pretrained GoogLeNet network by selecting it from the Deep Network Designer Start Page. If
you need to download the network, then click Install to open the Add-On Explorer.

Deep Network Designer displays a zoomed-out view of the whole network. Explore the network plot.
To zoom in with the mouse, use Ctrl+scroll wheel.

 Get Started with Deep Network Designer

1-3

Load Data Set

To load the data into Deep Network Designer, on the Data tab, click Import Data > Import Image
Data. The Import Image Data dialog box opens.

In the Data source list, select Folder. Click Browse and select the extracted MerchData folder.

The dialog box also allows you to split the validation data from within the app. Divide the data into
70% training data and 30% validation data.

Specify augmentation operations to perform on the training images. For this example, apply a random
reflection in the x-axis, a random rotation from the range [-90,90] degrees, and a random rescaling
from the range [1,2].

1 Getting Started

1-4

Click Import to import the data into Deep Network Designer.

Using Deep Network Designer, you can visually inspect the distribution of the training and validation
data in the Data tab. You can see that, in this example, there are five classes in the data set. You can
also view random observations from each class.

 Get Started with Deep Network Designer

1-5

Deep Network Designer resizes the images during training to match the network input size. To view
the network input size, in the Designer tab, click the imageInputLayer. This network has an input
size of 224-by-224.

1 Getting Started

1-6

Edit Network for Transfer Learning

To retrain a pretrained network to classify new images, replace the last learnable layer and the final
classification layer with new layers adapted to the new data set. In GoogLeNet, these layers have the
names 'loss3-classifier' and 'output', respectively.

In the Designer tab, drag a new fullyConnectedLayer from the Layer Library onto the canvas.
Set OutputSize to the number of classes in the new data, in this example, 5.

Edit learning rates to learn faster in the new layers than in the transferred layers. Set
WeightLearnRateFactor and BiasLearnRateFactor to 10. Delete the last fully connected layer
and connect your new layer instead.

Replace the output layer. Scroll to the end of the Layer Library and drag a new
classificationLayer onto the canvas. Delete the original output layer and connect your new
layer instead.

 Get Started with Deep Network Designer

1-7

Check Network

Check your network by clicking Analyze. The network is ready for training if Deep Learning Network
Analyzer reports zero errors.

1 Getting Started

1-8

Train Network

To train the network with the default settings, on the Training tab, click Train.

If you want greater control over the training, click Training Options and choose the settings to train
with. The default training options are better suited for large data sets. For small data sets, use
smaller values for the mini-batch size and the validation frequency. For more information on selecting
training options, see trainingOptions.

For this example, set InitialLearnRate to 0.0001, ValidationFrequency to 5, and MaxEpochs to
8. As there are 55 observations, set MiniBatchSize to 11 to divide the training data evenly and
ensure the whole training set is used during each epoch.

 Get Started with Deep Network Designer

1-9

To train the network with the specified training options, click Close and then click Train.

Deep Network Designer allows you to visualize and monitor the training progress. You can then edit
the training options and retrain the network, if required.

Export Results from Training

To export the results from training, on the Training tab, select Export > Export Trained Network
and Results. Deep Network Designer exports the trained network as the variable
trainedNetwork_1 and the training info as the variable trainInfoStruct_1.

You can also generate MATLAB code, which recreates the network and the training options used. On
the Training tab, select Export > Generate Code for Training.

Test Trained Network

Select a new image to classify using the trained network.

I = imread("MerchDataTest.jpg");

Resize the test image to match the network input size.

I = imresize(I, [224 224]);

Classify the test image using the trained network.

[YPred,probs] = classify(trainedNetwork_1,I);
imshow(I)

1 Getting Started

1-10

label = YPred;
title(string(label) + ", " + num2str(100*max(probs),3) + "%");

For more information, including on other pretrained networks, see Deep Network Designer.

See Also
Deep Network Designer

More About
• “Create Simple Image Classification Network Using Deep Network Designer” on page 1-29
• “Build Networks with Deep Network Designer”
• “Deep Learning Tips and Tricks”
• “List of Deep Learning Layers”

 Get Started with Deep Network Designer

1-11

Try Deep Learning in 10 Lines of MATLAB Code
This example shows how to use deep learning to identify objects on a live webcam using only 10 lines
of MATLAB code. Try the example to see how simple it is to get started with deep learning in
MATLAB.

1 Run these commands to get the downloads if needed, connect to the webcam, and get a
pretrained neural network.

camera = webcam; % Connect to the camera
net = alexnet; % Load the neural network

If you need to install the webcam and alexnet add-ons, a message from each function appears
with a link to help you download the free add-ons using Add-On Explorer. Alternatively, see Deep
Learning Toolbox Model for AlexNet Network and MATLAB Support Package for USB Webcams.

After you install Deep Learning Toolbox Model for AlexNet Network, you can use it to classify
images. AlexNet is a pretrained convolutional neural network (CNN) that has been trained on
more than a million images and can classify images into 1000 object categories (for example,
keyboard, mouse, coffee mug, pencil, and many animals).

2 Run the following code to show and classify live images. Point the webcam at an object and the
neural network reports what class of object it thinks the webcam is showing. It will keep
classifying images until you press Ctrl+C. The code resizes the image for the network using
imresize.

while true
 im = snapshot(camera); % Take a picture
 image(im); % Show the picture
 im = imresize(im,[227 227]); % Resize the picture for alexnet
 label = classify(net,im); % Classify the picture
 title(char(label)); % Show the class label
 drawnow
end

In this example, the network correctly classifies a coffee mug. Experiment with objects in your
surroundings to see how accurate the network is.

1 Getting Started

1-12

https://www.mathworks.com/matlabcentral/fileexchange/59133-deep-learning-toolbox-model-for-alexnet-network
https://www.mathworks.com/matlabcentral/fileexchange/59133-deep-learning-toolbox-model-for-alexnet-network
https://www.mathworks.com/matlabcentral/fileexchange/45182-matlab-support-package-for-usb-webcams

To watch a video of this example, see Deep Learning in 11 Lines of MATLAB Code.

To learn how to extend this example and show the probability scores of classes, see “Classify
Webcam Images Using Deep Learning”.

For next steps in deep learning, you can use the pretrained network for other tasks. Solve new
classification problems on your image data with transfer learning or feature extraction. For
examples, see “Start Deep Learning Faster Using Transfer Learning” and “Train Classifiers Using
Features Extracted from Pretrained Networks”. To try other pretrained networks, see
“Pretrained Deep Neural Networks”.

See Also
trainNetwork | trainingOptions | alexnet

More About
• “Classify Webcam Images Using Deep Learning”
• “Classify Image Using Pretrained Network” on page 1-14
• “Get Started with Transfer Learning” on page 1-16
• “Transfer Learning with Deep Network Designer”
• “Create Simple Image Classification Network” on page 1-26
• “Create Simple Sequence Classification Network Using Deep Network Designer” on page 1-34

 Try Deep Learning in 10 Lines of MATLAB Code

1-13

https://www.mathworks.com/videos/deep-learning-in-11-lines-of-matlab-code-1481229977318.html

Classify Image Using Pretrained Network

This example shows how to classify an image using the pretrained deep convolutional neural network
GoogLeNet.

GoogLeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input, and then
outputs a label for the object in the image together with the probabilities for each of the object
categories.

Load Pretrained Network

Load the pretrained GoogLeNet network. You can also choose to load a different pretrained network
for image classification. This step requires the Deep Learning Toolbox™ Model for GoogLeNet
Network support package. If you do not have the required support packages installed, then the
software provides a download link.

net = googlenet;

Read and Resize Image

The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the network input size is the InputSize property of the image input layer.

Read the image that you want to classify and resize it to the input size of the network. This resizing
slightly changes the aspect ratio of the image.

I = imread("peppers.png");
inputSize = net.Layers(1).InputSize;
I = imresize(I,inputSize(1:2));

Classify and Display Image

Classify and display the image with the predicted label.

label = classify(net,I);
figure
imshow(I)
title(string(label))

1 Getting Started

1-14

For a more detailed example showing how to also display the top predictions with their associated
probabilities, see “Classify Image Using GoogLeNet”.

For next steps in deep learning, you can use the pretrained network for other tasks. Solve new
classification problems on your image data with transfer learning or feature extraction. For examples,
see “Start Deep Learning Faster Using Transfer Learning” and “Train Classifiers Using Features
Extracted from Pretrained Networks”. To try other pretrained networks, see “Pretrained Deep Neural
Networks”.

References

1 Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2015.

2 BVLC GoogLeNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

See Also
googlenet | classify | Deep Network Designer

More About
• “Classify Image Using GoogLeNet”
• “Try Deep Learning in 10 Lines of MATLAB Code” on page 1-12
• “Get Started with Transfer Learning” on page 1-16
• “Create Simple Image Classification Network Using Deep Network Designer” on page 1-29
• “Transfer Learning with Deep Network Designer”
• “Create Simple Image Classification Network” on page 1-26
• “Create Simple Sequence Classification Network Using Deep Network Designer” on page 1-34

 Classify Image Using Pretrained Network

1-15

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

Get Started with Transfer Learning

This example shows how to use transfer learning to retrain SqueezeNet, a pretrained convolutional
neural network, to classify a new set of images. Try this example to see how simple it is to get started
with deep learning in MATLAB®.

For a visual walkthrough of the example, watch the video.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

1 Getting Started

1-16

Extract Data

In the workspace, extract the MathWorks Merch data set. This is a small data set containing 75
images of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards,
screwdriver, and torch).

unzip("MerchData.zip");

Load Pretrained Network

Open Deep Network Designer.

deepNetworkDesigner

Select SqueezeNet from the list of pretrained networks and click Open.

 Get Started with Transfer Learning

1-17

Deep Network Designer displays a zoomed-out view of the whole network.

1 Getting Started

1-18

Explore the network plot. To zoom in with the mouse, use Ctrl+scroll wheel. To pan, use the arrow
keys, or hold down the scroll wheel and drag the mouse. Select a layer to view its properties.
Deselect all layers to view the network summary in the Properties pane.

Import Data

To load the data into Deep Network Designer, on the Data tab, click Import Data > Import Image
Data. The Import Image Data dialog box opens.

In the Data source list, select Folder. Click Browse and select the extracted MerchData folder.

Divide the data into 70% training data and 30% validation data.

Specify augmentation operations to perform on the training images. Data augmentation helps prevent
the network from overfitting and memorizing the exact details of the training images. For this
example, apply a random reflection in the x-axis, a random rotation from the range [-90,90] degrees,
and a random rescaling from the range [1,2].

 Get Started with Transfer Learning

1-19

Click Import to import the data into Deep Network Designer.

Edit Network for Transfer Learning

To retrain SqueezeNet to classify new images, replace the last 2-D convolutional layer and the final
classification layer of the network. In SqueezeNet, these layers have the names 'conv10' and
'ClassificationLayer_predictions', respectively.

On the Designer pane, drag a new convolution2dLayer onto the canvas. To match the original
convolutional layer, set FilterSize to 1,1. Edit NumFilters to be the number of classes in the
new data, in this example, 5.

Change the learning rates so that learning is faster in the new layer than in the transferred layers by
setting WeightLearnRateFactor and BiasLearnRateFactor to 10.

Delete the last 2-D convolutional layer and connect your new layer instead.

1 Getting Started

1-20

Replace the output layer. Scroll to the end of the Layer Library and drag a new
classificationLayer onto the canvas. Delete the original output layer and connect your new
layer in its place.

 Get Started with Transfer Learning

1-21

Train Network

To choose the training options, select the Training tab and click Training Options. Set the initial
learn rate to a small value to slow down learning in the transferred layers. In the previous step, you
increased the learning rate factors for the 2-D convolutional layer to speed up learning in the new
final layers. This combination of learning rate settings results in fast learning only in the new layers
and slower learning in the other layers.

For this example, set InitialLearnRate to 0.0001, ValidationFrequency to 5, MaxEpochs to 8. As
there are 55 observations, set MiniBatchSize to 11 to divide the training data evenly and ensure the
whole training set is used during each epoch.

1 Getting Started

1-22

To train the network with the specified training options, click Close and then click Train.

Deep Network Designer allows you to visualize and monitor the training progress. You can then edit
the training options and retrain the network, if required.

Export Results and Generate MATLAB Code

To export the results from training, on the Training tab, select Export > Export Trained Network
and Results. Deep Network Designer exports the trained network as the variable
trainedNetwork_1 and the training info as the variable trainInfoStruct_1.

 Get Started with Transfer Learning

1-23

You can also generate MATLAB code, which recreates the network and the training options used. On
the Training tab, select Export > Generate Code for Training. Examine the MATLAB code to learn
how to programmatically prepare the data for training, create the network architecture, and train the
network.

Classify New Image

Load a new image to classify using the trained network.

I = imread("MerchDataTest.jpg");

Resize the test image to match the network input size.

I = imresize(I, [227 227]);

Classify the test image using the trained network.

[YPred,probs] = classify(trainedNetwork_1,I);
imshow(I)
label = YPred;
title(string(label) + ", " + num2str(100*max(probs),3) + "%");

References
[1] ImageNet. http://www.image-net.org

[2] Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt
Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size." Preprint, submitted November 4, 2016. https://arxiv.org/abs/1602.07360.

[3] Iandola, Forrest N. "SqueezeNet." https://github.com/forresti/SqueezeNet.

1 Getting Started

1-24

See Also
trainNetwork | trainingOptions | squeezenet | Deep Network Designer

More About
• “Try Deep Learning in 10 Lines of MATLAB Code” on page 1-12
• “Classify Image Using Pretrained Network” on page 1-14
• “Transfer Learning with Deep Network Designer”
• “Create Simple Image Classification Network Using Deep Network Designer” on page 1-29
• “Create Simple Image Classification Network” on page 1-26
• “Create Simple Sequence Classification Network Using Deep Network Designer”
• “Generate Experiment Using Deep Network Designer”

 Get Started with Transfer Learning

1-25

Create Simple Image Classification Network

This example shows how to create and train a simple convolutional neural network for deep learning
classification. Convolutional neural networks are essential tools for deep learning and are especially
suited for image recognition.

The example demonstrates how to:

• Load image data.
• Define the network architecture.
• Specify training options.
• Train the network.
• Predict the labels of new data and calculate the classification accuracy.

For an example showing how to interactively create and train a simple image classification network,
see “Create Simple Image Classification Network Using Deep Network Designer” on page 1-29.

Load Data

Load the digit sample data as an image datastore. The imageDatastore function automatically
labels the images based on folder names.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
 'nndatasets','DigitDataset');

imds = imageDatastore(digitDatasetPath, ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');

Divide the data into training and validation data sets, so that each category in the training set
contains 750 images, and the validation set contains the remaining images from each label.
splitEachLabel splits the image datastore into two new datastores for training and validation.

numTrainFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomized');

Define Network Architecture

Define the convolutional neural network architecture. Specify the size of the images in the input layer
of the network and the number of classes in the fully connected layer before the classification layer.
Each image is 28-by-28-by-1 pixels and there are 10 classes.

inputSize = [28 28 1];
numClasses = 10;

layers = [
 imageInputLayer(inputSize)
 convolution2dLayer(5,20)
 batchNormalizationLayer
 reluLayer
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];

1 Getting Started

1-26

For more information about deep learning layers, see “List of Deep Learning Layers”.

Train Network

Specify the training options and train the network.

By default, trainNetwork uses a GPU if one is available, otherwise, it uses a CPU. Training on a
GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). You can also
specify the execution environment by using the 'ExecutionEnvironment' name-value pair
argument of trainingOptions.

options = trainingOptions('sgdm', ...
 'MaxEpochs',4, ...
 'ValidationData',imdsValidation, ...
 'ValidationFrequency',30, ...
 'Verbose',false, ...
 'Plots','training-progress');

net = trainNetwork(imdsTrain,layers,options);

 Create Simple Image Classification Network

1-27

For more information about training options, see “Set Up Parameters and Train Convolutional Neural
Network”.

Test Network

Classify the validation data and calculate the classification accuracy.

YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 0.9888

For next steps in deep learning, you can try using pretrained network for other tasks. Solve new
classification problems on your image data with transfer learning or feature extraction. For examples,
see “Start Deep Learning Faster Using Transfer Learning” and “Train Classifiers Using Features
Extracted from Pretrained Networks”. To learn more about pretrained networks, see “Pretrained
Deep Neural Networks”.

See Also
trainNetwork | trainingOptions

More About
• “Start Deep Learning Faster Using Transfer Learning”
• “Create Simple Image Classification Network Using Deep Network Designer” on page 1-29
• “Try Deep Learning in 10 Lines of MATLAB Code” on page 1-12
• “Classify Image Using Pretrained Network” on page 1-14
• “Get Started with Transfer Learning” on page 1-16
• “Transfer Learning with Deep Network Designer”
• “Create Simple Sequence Classification Network Using Deep Network Designer” on page 1-34

1 Getting Started

1-28

Create Simple Image Classification Network Using Deep
Network Designer

This example shows how to create and train a simple convolutional neural network for deep learning
classification using Deep Network Designer. Convolutional neural networks are essential tools for
deep learning and are especially suited for image recognition.

In this example, you:

• Import image data.
• Define the network architecture.
• Specify training options.
• Train the network.

Load Data

Load the digit sample data as an image datastore. The imageDatastore function automatically
labels the images based on folder names. The data set has 10 classes and each image in the data set
is 28-by-28-by-1 pixels.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
 'nndatasets','DigitDataset');

imds = imageDatastore(digitDatasetPath, ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');

Open Deep Network Designer. Create a network, import and visualize data, and train the network
using Deep Network Designer.

deepNetworkDesigner

To create a blank network, pause on Blank Network and click New.

To import the image datastore, select the Data tab and click Import Data > Import Image Data.
Select imds as the data source. Set aside 30% of the training data to use as validation data.
Randomly allocate observations to the training and validation sets by selecting Randomize.

 Create Simple Image Classification Network Using Deep Network Designer

1-29

Import the data by clicking Import.

Define Network Architecture

In the Designer pane, define the convolutional neural network architecture. Drag layers from the
Layer Library and connect them. To quickly search for layers, use the Filter layers search box in
the Layer Library pane. To edit the properties of a layer, click the layer and edit the values in the
Properties pane.

Connect layers in this order:

1 imageInputLayer with the InputSize property set to 28,28,1
2 convolution2dLayer
3 batchNormalizationLayer
4 reluLayer
5 fullyConnectedLayer with the OutputSize property set to 10
6 softmaxLayer
7 classificationLayer

1 Getting Started

1-30

For more information about deep learning layers, see “List of Deep Learning Layers”.

Train Network

Specify the training options and train the network.

On the Training tab, click Training Options. For this example, set the maximum number of epochs
to 5 and keep the other default settings. Set the training options by clicking Close. For more
information about training options, see “Set Up Parameters and Train Convolutional Neural
Network”.

 Create Simple Image Classification Network Using Deep Network Designer

1-31

Train the network by clicking Train.

The accuracy is the fraction of labels that the network predicts correctly. In this case, more than 97%
of the predicted labels match the true labels of the validation set.

To export the trained network to the workspace, on the Training tab, click Export.

1 Getting Started

1-32

For next steps in deep learning, you can try using pretrained networks for other tasks. Solve new
classification problems on your image data with transfer learning. For example, see “Get Started with
Transfer Learning” on page 1-16. To learn more about pretrained networks, see “Pretrained Deep
Neural Networks”.

See Also
trainingOptions | Deep Network Designer

More About
• “Create Simple Image Classification Network” on page 1-26
• “Start Deep Learning Faster Using Transfer Learning”
• “Try Deep Learning in 10 Lines of MATLAB Code” on page 1-12
• “Classify Image Using Pretrained Network” on page 1-14
• “Get Started with Transfer Learning” on page 1-16
• “Create Simple Sequence Classification Network Using Deep Network Designer” on page 1-34

 Create Simple Image Classification Network Using Deep Network Designer

1-33

Create Simple Sequence Classification Network Using Deep
Network Designer

This example shows how to create a simple long short-term memory (LSTM) classification network
using Deep Network Designer.

To train a deep neural network to classify sequence data, you can use an LSTM network. An LSTM
network is a type of recurrent neural network (RNN) that learns long-term dependencies between
time steps of sequence data.

The example demonstrates how to:

• Load sequence data.
• Construct the network architecture.
• Specify training options.
• Train the network.
• Predict the labels of new data and calculate the classification accuracy.

Load Data

Load the Japanese Vowels data set, as described in [1] on page 1-39 and [2] on page 1-39. The
predictors are cell arrays containing sequences of varying length with a feature dimension of 12. The
labels are categorical vectors of labels 1,2,...,9.

[XTrain,YTrain] = japaneseVowelsTrainData;
[XValidation,YValidation] = japaneseVowelsTestData;

View the sizes of the first few training sequences. The sequences are matrices with 12 rows (one row
for each feature) and a varying number of columns (one column for each time step).

XTrain(1:5)

ans=5×1 cell array
 {12×20 double}
 {12×26 double}
 {12×22 double}
 {12×20 double}
 {12×21 double}

Define Network Architecture

Open Deep Network Designer.

deepNetworkDesigner

Pause on Sequence-to-Label and click Open. This opens a prebuilt network suitable for sequence
classification problems.

1 Getting Started

1-34

Deep Network Designer displays the prebuilt network.

 Create Simple Sequence Classification Network Using Deep Network Designer

1-35

You can easily adapt this sequence network for the Japanese Vowels data set.

Select sequenceInputLayer and check that InputSize is set to 12 to match the feature dimension.

1 Getting Started

1-36

Select lstmLayer and set NumHiddenUnits to 100.

Select fullyConnectedLayer and check that OutputSize is set to 9, the number of classes.

Check Network Architecture

To check the network and examine more details of the layers, click Analyze.

 Create Simple Sequence Classification Network Using Deep Network Designer

1-37

Export Network Architecture

To export the network architecture to the workspace, on the Designer tab, click Export. Deep
Network Designer saves the network as the variable layers_1.

You can also generate code to construct the network architecture by selecting Export > Generate
Code.

Train Network

Specify the training options and train the network.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

miniBatchSize = 27;
options = trainingOptions('adam', ...
 'ExecutionEnvironment','cpu', ...
 'MaxEpochs',100, ...
 'MiniBatchSize',miniBatchSize, ...
 'ValidationData',{XValidation,YValidation}, ...
 'GradientThreshold',2, ...
 'Shuffle','every-epoch', ...
 'Verbose',false, ...
 'Plots','training-progress');

Train the network.

1 Getting Started

1-38

net = trainNetwork(XTrain,YTrain,layers_1,options);

You can also train this network using Deep Network Designer and datastore objects. For an example
showing how to train a sequence-to-sequence regression network in Deep Network Designer, see
“Train Network for Time Series Forecasting Using Deep Network Designer”.

Test Network

Classify the test data and calculate the classification accuracy. Specify the same mini-batch size as for
training.

YPred = classify(net,XValidation,'MiniBatchSize',miniBatchSize);
acc = mean(YPred == YValidation)

acc = 0.9405

For next steps, you can try improving the accuracy by using bidirectional LSTM (BiLSTM) layers or
by creating a deeper network. For more information, see “Long Short-Term Memory Networks”.

For an example showing how to use convolutional networks to classify sequence data, see “Train
Speech Command Recognition Model Using Deep Learning”.

References

[1] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using
Passing-through Regions.” Pattern Recognition Letters 20, no. 11–13 (November 1999): 1103–11.
https://doi.org/10.1016/S0167-8655(99)00077-X.

 Create Simple Sequence Classification Network Using Deep Network Designer

1-39

[2] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. Japanese Vowels Data Set. Distributed by UCI
Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels

See Also
trainingOptions | trainNetwork | lstmLayer

More About
• “Long Short-Term Memory Networks”
• “Try Deep Learning in 10 Lines of MATLAB Code” on page 1-12
• “Classify Image Using Pretrained Network” on page 1-14
• “Get Started with Transfer Learning” on page 1-16
• “Transfer Learning with Deep Network Designer”
• “Create Simple Image Classification Network Using Deep Network Designer” on page 1-29

1 Getting Started

1-40

https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels

Shallow Networks for Pattern Recognition, Clustering and Time
Series

In this section...
“Shallow Network Apps and Functions in Deep Learning Toolbox” on page 1-41
“Deep Learning Toolbox Applications” on page 1-42
“Shallow Neural Network Design Steps” on page 1-43

Neural networks are composed of simple elements operating in parallel. These elements are inspired
by biological nervous systems. As in nature, the connections between elements largely determine the
network function. You can train a neural network to perform a particular function by adjusting the
values of the connections (weights) between elements.

Typically, neural networks are adjusted, or trained, so that a particular input leads to a specific target
output. The next figure illustrates such a situation. Here, the network is adjusted, based on a
comparison of the output and the target, until the network output matches the target. Typically, many
such input/target pairs are needed to train a network.

Neural networks have been trained to perform complex functions in various fields, including pattern
recognition, identification, classification, speech, vision, and control systems.

Neural networks can also be trained to solve problems that are difficult for conventional computers
or human beings. The toolbox emphasizes the use of neural network paradigms that build up to—or
are themselves used in— engineering, financial, and other practical applications.

The following topics explain how to use graphical tools for training neural networks to solve problems
in function fitting, pattern recognition, clustering, and time series. Using these tools can give you an
excellent introduction to the use of the Deep Learning Toolbox software:

• “Fit Data with a Shallow Neural Network” on page 1-45
• “Classify Patterns with a Shallow Neural Network” on page 1-63
• “Cluster Data with a Self-Organizing Map” on page 1-77
• “Shallow Neural Network Time-Series Prediction and Modeling” on page 1-89

Shallow Network Apps and Functions in Deep Learning Toolbox
There are four ways you can use the Deep Learning Toolbox software.

 Shallow Networks for Pattern Recognition, Clustering and Time Series

1-41

• The first way is through its tools. These tools provide a convenient way to access the capabilities
of the toolbox for the following tasks:

• • Function fitting (nftool)
• Pattern recognition (nprtool)
• Data clustering (nctool)
• Time-series analysis (ntstool)

• The second way to use the toolbox is through basic command-line operations. The command-line
operations offer more flexibility than the tools, but with some added complexity. If this is your first
experience with the toolbox, the tools provide the best introduction. In addition, the tools can
generate scripts of documented MATLAB code to provide you with templates for creating your
own customized command-line functions. The process of using the tools first, and then generating
and modifying MATLAB scripts, is an excellent way to learn about the functionality of the toolbox.

• The third way to use the toolbox is through customization. This advanced capability allows you to
create your own custom neural networks, while still having access to the full functionality of the
toolbox. You can create networks with arbitrary connections, and you still be able to train them
using existing toolbox training functions (as long as the network components are differentiable).

• The fourth way to use the toolbox is through the ability to modify any of the functions contained in
the toolbox. Every computational component is written in MATLAB code and is fully accessible.

These four levels of toolbox usage span the novice to the expert: simple tools guide the new user
through specific applications, and network customization allows researchers to try novel
architectures with minimal effort. Whatever your level of neural network and MATLAB knowledge,
there are toolbox features to suit your needs.

Automatic Script Generation

The tools themselves form an important part of the learning process for the Deep Learning Toolbox
software. They guide you through the process of designing neural networks to solve problems in four
important application areas, without requiring any background in neural networks or sophistication
in using MATLAB. In addition, the tools can automatically generate both simple and advanced
MATLAB scripts that can reproduce the steps performed by the tool, but with the option to override
default settings. These scripts can provide you with templates for creating customized code, and they
can aid you in becoming familiar with the command-line functionality of the toolbox. It is highly
recommended that you use the automatic script generation facility of these tools.

Deep Learning Toolbox Applications
It would be impossible to cover the total range of applications for which neural networks have
provided outstanding solutions. The remaining sections of this topic describe only a few of the
applications in function fitting, pattern recognition, clustering, and time series analysis. The following
table provides an idea of the diversity of applications for which neural networks provide state-of-the-
art solutions.

Industry Business Applications
Aerospace High-performance aircraft autopilot, flight path simulation, aircraft

control systems, autopilot enhancements, aircraft component
simulation, and aircraft component fault detection

Automotive Automobile automatic guidance system, and warranty activity analysis

1 Getting Started

1-42

Industry Business Applications
Banking Check and other document reading and credit application evaluation
Defense Weapon steering, target tracking, object discrimination, facial

recognition, new kinds of sensors, sonar, radar and image signal
processing including data compression, feature extraction and noise
suppression, and signal/image identification

Electronics Code sequence prediction, integrated circuit chip layout, process
control, chip failure analysis, machine vision, voice synthesis, and
nonlinear modeling

Entertainment Animation, special effects, and market forecasting
Financial Real estate appraisal, loan advising, mortgage screening, corporate

bond rating, credit-line use analysis, credit card activity tracking,
portfolio trading program, corporate financial analysis, and currency
price prediction

Industrial Prediction of industrial processes, such as the output gases of
furnaces, replacing complex and costly equipment used for this
purpose in the past

Insurance Policy application evaluation and product optimization
Manufacturing Manufacturing process control, product design and analysis, process

and machine diagnosis, real-time particle identification, visual quality
inspection systems, beer testing, welding quality analysis, paper
quality prediction, computer-chip quality analysis, analysis of grinding
operations, chemical product design analysis, machine maintenance
analysis, project bidding, planning and management, and dynamic
modeling of chemical process system

Medical Breast cancer cell analysis, EEG and ECG analysis, prosthesis design,
optimization of transplant times, hospital expense reduction, hospital
quality improvement, and emergency-room test advisement

Oil and gas Exploration
Robotics Trajectory control, forklift robot, manipulator controllers, and vision

systems
Securities Market analysis, automatic bond rating, and stock trading advisory

systems
Speech Speech recognition, speech compression, vowel classification, and

text-to-speech synthesis
Telecommunications Image and data compression, automated information services, real-

time translation of spoken language, and customer payment
processing systems

Transportation Truck brake diagnosis systems, vehicle scheduling, and routing
systems

Shallow Neural Network Design Steps
In the remaining sections of this topic, you will follow the standard steps for designing neural
networks to solve problems in four application areas: function fitting, pattern recognition, clustering,

 Shallow Networks for Pattern Recognition, Clustering and Time Series

1-43

and time series analysis. The work flow for any of these problems has seven primary steps. (Data
collection in step 1, while important, generally occurs outside the MATLAB environment.)

1 Collect data
2 Create the network
3 Configure the network
4 Initialize the weights and biases
5 Train the network
6 Validate the network
7 Use the network

You will follow these steps using both the GUI tools and command-line operations in the following
sections:

• “Fit Data with a Shallow Neural Network” on page 1-45
• “Classify Patterns with a Shallow Neural Network” on page 1-63
• “Cluster Data with a Self-Organizing Map” on page 1-77
• “Shallow Neural Network Time-Series Prediction and Modeling” on page 1-89

1 Getting Started

1-44

Fit Data with a Shallow Neural Network
Neural networks are good at fitting functions. In fact, there is proof that a fairly simple neural
network can fit any practical function.

Suppose, for instance, that you have data from a health clinic. You want to design a network that can
predict the percentage of body fat of a person, given 13 anatomical measurements. You have a total
of 252 example people for which you have those 13 items of data and their associated percentages of
body fat.

You can solve this problem in two ways:

• Use the Neural Net Fitting app, as described in “Fit Data Using the Neural Net Fitting App” on
page 1-45.

• Use command-line functions, as described in “Fit Data Using Command-Line Functions” on page
1-54.

It is generally best to start with the app, and then use the app to automatically generate command-
line scripts. Before using either method, first define the problem by selecting a data set. Each of the
neural network apps has access to many sample data sets that you can use to experiment with the
toolbox (see “Sample Data Sets for Shallow Neural Networks” on page 1-113). If you have a specific
problem that you want to solve, you can load your own data into the workspace. The next section
describes the data format.

Tip To interactively build and train deep networks, use Deep Network Designer.

Defining a Problem
To define a fitting (regression) problem for the toolbox, arrange a set of input vectors (predictors) as
columns in a matrix. Then, arrange a set of responses (the correct output vectors for each of the
input vectors) into a second matrix. For example, you can define a regression problem with four
observations, each with two input features and a single response, as follows:

predictors = [0 1 0 1; 0 0 1 1];
responses = [0 0 0 1];

The next section shows how to train a network to fit a data set, using the Neural Net Fitting app.
This example uses an example data set provided with the toolbox.

Fit Data Using the Neural Net Fitting App

This example shows how to train a shallow neural network to fit data using the Neural Net Fitting
app.

Open the Neural Net Fitting app using nftool.

nftool

 Fit Data with a Shallow Neural Network

1-45

Select Data

The Neural Net Fitting app has example data to help you get started training a neural network.

To import example body fat data, select Import > Import Body Fat Data Set. You can use this data
set to train a neural network to estimate the body fat of someone from various measurements. If you
import your own data from file or the workspace, you must specify the predictors and responses, and
whether the observations are in rows or columns.

1 Getting Started

1-46

Information about the imported data appears in the Model Summary. This data set contains 252
observations, each with 13 features. The responses contain the body fat percentage for each
observation.

Split the data into training, validation, and test sets. Keep the default settings. The data is split into:

• 70% for training.
• 15% to validate that the network is generalizing and to stop training before overfitting.
• 15% to independently test network generalization.

For more information on data division, see “Divide Data for Optimal Neural Network Training”.

Create Network

The network is a two-layer feedforward network with a sigmoid transfer function in the hidden layer
and a linear transfer function in the output layer. The Layer size value defines the number of hidden

 Fit Data with a Shallow Neural Network

1-47

neurons. Keep the default layer size, 10. You can see the network architecture in the Network pane.
The network plot updates to reflect the input data. In this example, the data has 13 inputs (features)
and one output.

Train Network

To train the network, select Train > Train with Levenberg-Marquardt. This is the default training
algorithm and the same as clicking Train.

1 Getting Started

1-48

Training with Levenberg-Marquardt (trainlm) is recommended for most problems. For noisy or
small problems, Bayesian Regularization (trainbr) can obtain a better solution, at the cost of taking
longer. For large problems, Scaled Conjugate Gradient (trainscg) is recommended as it uses
gradient calculations which are more memory efficient than the Jacobian calculations the other two
algorithms use.

In the Training pane, you can see the training progress. Training continues until one of the stopping
criteria is met. In this example, training continues until the validation error increases consecutively
for six iterations ("Met validation criterion").

Analyze Results

The Model Summary contains information about the training algorithm and the training results for
each data set.

 Fit Data with a Shallow Neural Network

1-49

You can further analyze the results by generating plots. To plot the linear regression, in the Plots
section, click Regression. The regression plot displays the network predictions (output) with respect
to responses (target) for the training, validation, and test sets.

1 Getting Started

1-50

For a perfect fit, the data should fall along a 45 degree line, where the network outputs are equal to
the responses. For this problem, the fit is reasonably good for all of the data sets. If you require more
accurate results, you can retrain the network by clicking Train again. Each training will have
different initial weights and biases of the network, and can produce an improved network after
retraining.

View the error histogram to obtain additional verification of network performance. In the Plots
section, click Error Histogram.

 Fit Data with a Shallow Neural Network

1-51

The blue bars represent training data, the green bars represent validation data, and the red bars
represent testing data. The histogram provides an indication of outliers, which are data points where
the fit is significantly worse than most of the data. It is a good idea to check the outliers to determine
if the data is poor, or if those data points are different than the rest of the data set. If the outliers are
valid data points, but are unlike the rest of the data, then the network is extrapolating for these
points. You should collect more data that looks like the outlier points and retrain the network.

If you are unhappy with the network performance, you can do one of the following:

• Train the network again.
• Increase the number of hidden neurons.
• Use a larger training data set.

If performance on the training set is good but the test set performance is poor, this could indicate the
model is overfitting. Reducing the number of neurons can reduce the overfitting.

1 Getting Started

1-52

You can also evaluate the network performance on an additional test set. To load additional test data
to evaluate the network with, in the Test section, click Test. The Model Summary displays the
additional test results. You can also generate plots to analyze the additional test data results.

Generate Code

Select Generate Code > Generate Simple Training Script to create MATLAB code to reproduce
the previous steps from the command line. Creating MATLAB code can be helpful if you want to learn
how to use the command line functionality of the toolbox to customize the training process. In “Fit
Data Using Command-Line Functions” on page 1-54, you will investigate the generated scripts in
more detail.

Export Network

You can export your trained network to the workspace or Simulink®. You can also deploy the network
with MATLAB Compiler™ tools and other MATLAB code generation tools. To export your trained
network and results, select Export Model > Export to Workspace.

 Fit Data with a Shallow Neural Network

1-53

Fit Data Using Command-Line Functions
The easiest way to learn how to use the command-line functionality of the toolbox is to generate
scripts from the apps, and then modify them to customize the network training. As an example, look
at the simple script that was created in the previous section using the Neural Net Fitting app.

% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created 15-Mar-2021 10:48:13
%
% This script assumes these variables are defined:
%
% bodyfatInputs - input data.
% bodyfatTargets - target data.

x = bodyfatInputs;
t = bodyfatTargets;

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.

% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network

1 Getting Started

1-54

[net,tr] = train(net,x,t);

% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)

You can save the script and then run it from the command line to reproduce the results of the
previous training session. You can also edit the script to customize the training process. In this case,
follow each step in the script.

Select Data

The script assumes that the predictor and response vectors are already loaded into the workspace. If
the data is not loaded, you can load it as follows:

load bodyfat_dataset

This command loads the predictors bodyfatInputs and the responses bodyfatTargets into the
workspace.

This data set is one of the sample data sets that is part of the toolbox. For information about the data
sets available, see “Sample Data Sets for Shallow Neural Networks” on page 1-113. You can also see
a list of all available data sets by entering the command help nndatasets. You can load the
variables from any of these data sets using your own variable names. For example, the command

[x,t] = bodyfat_dataset;

will load the body fat predictors into the array x and the body fat responses into the array t.

Choose Training Algorithm

Choose training algorithm. The network uses the default Levenberg-Marquardt algorithm (trainlm)
for training.

trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.

For problems in which Levenberg-Marquardt does not produce as accurate results as desired, or for
large data problems, consider setting the network training function to Bayesian Regularization
(trainbr) or Scaled Conjugate Gradient (trainscg), respectively, with either

net.trainFcn = 'trainbr';
net.trainFcn = 'trainscg';

Create Network

Create a network. The default network for function fitting (or regression) problems, fitnet, is a
feedforward network with the default tan-sigmoid transfer function in the hidden layer and linear

 Fit Data with a Shallow Neural Network

1-55

transfer function in the output layer. The network has a single hidden layer with ten neurons
(default). The network has one output neuron because there is only one response value associated
with each input vector.

hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);

Note More neurons require more computation, and they have a tendency to overfit the data when
the number is set too high, but they allow the network to solve more complicated problems. More
layers require more computation, but their use might result in the network solving complex problems
more efficiently. To use more than one hidden layer, enter the hidden layer sizes as elements of an
array in the fitnet command.

Divide Data

Set up the division of data.

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

With these settings, the predictor vectors and response vectors are randomly divided, with 70% for
training, 15% for validation, and 15% for testing. For more information about the data division
process, see “Divide Data for Optimal Neural Network Training”.

Train Network

Train the network.

[net,tr] = train(net,x,t);

During training, the training progress window opens. You can interrupt training at any point by
clicking the stop button .

1 Getting Started

1-56

Training finished when the validation error increased consecutively for six iterations. If you click
Performance in the training window, a plot of the training errors, validation errors, and test errors
appears, as shown in the following figure. In this example, the result is reasonable because of the
following considerations:

 Fit Data with a Shallow Neural Network

1-57

• The final mean-square error is small.
• The test set error and the validation set error have similar characteristics.
• No significant overfitting has occurred by epoch 13 (where the best validation performance

occurs).

Test Network

Test the network. After the network has trained, you can use it to compute the network outputs. The
following code calculates the network outputs, errors, and overall performance.

y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)

performance =

 16.2815

It is also possible to calculate the network performance only on the test set by using the testing
indices, which are located in the training record. For more information, see “Analyze Shallow Neural
Network Performance After Training”.

tInd = tr.testInd;
tstOutputs = net(x(:,tInd));
tstPerform = perform(net,t(tInd),tstOutputs)

1 Getting Started

1-58

tstPerform =

 20.1698

View Network

View the network diagram.

view(net)

 Fit Data with a Shallow Neural Network

1-59

Analyze Results

Analyze the results. To perform a linear regression between the network predictions (outputs) and
the corresponding responses (targets), click Regression in the training window.

1 Getting Started

1-60

The output tracks the responses well for training, testing, and validation sets, and the R-value is over
0.87 for the total data set. If even more accurate results were required, you could try any of these
approaches:

• Reset the initial network weights and biases to new values with init and train again.
• Increase the number of hidden neurons.
• Use a larger training data set.
• Increase the number of input values, if more relevant information is available.
• Try a different training algorithm (see “Training Algorithms”).

 Fit Data with a Shallow Neural Network

1-61

In this case, the network response is satisfactory, and you can now put the network to use on new
data.

Next Steps

To get more experience in command-line operations, try some of these tasks:

• During training, open a plot window (such as the regression plot), and watch it animate.
• Plot from the command line with functions such as plotfit, plotregression,

plottrainstate and plotperform.

Also, see the advanced script for more options, when training from the command line.

Each time a neural network is trained can result in a different solution due to random initial weight
and bias values and different divisions of data into training, validation, and test sets. As a result,
different neural networks trained on the same problem can give different outputs for the same input.
To ensure that a neural network of good accuracy has been found, retrain several times.

There are several other techniques for improving upon initial solutions if higher accuracy is desired.
For more information, see “Improve Shallow Neural Network Generalization and Avoid Overfitting”.

See Also
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition | Neural Net
Clustering | trainlm | fitnet

Related Examples
• “Classify Patterns with a Shallow Neural Network” on page 1-63
• “Cluster Data with a Self-Organizing Map” on page 1-77
• “Shallow Neural Network Time-Series Prediction and Modeling” on page 1-89

1 Getting Started

1-62

Classify Patterns with a Shallow Neural Network
In addition to function fitting, neural networks are also good at recognizing patterns.

For example, suppose you want to classify a tumor as benign or malignant, based on uniformity of cell
size, clump thickness, mitosis, etc. You have 699 example cases for which you have 9 features and the
correct classification as benign or malignant.

As with function fitting, there are two ways to solve this problem:

• Use the Neural Net Pattern Recognition app, as described in “Classify Patterns Using the
Neural Net Pattern Recognition App” on page 1-64.

• Use command-line functions, as described in “Classify Patterns Using Command-Line Functions”
on page 1-70.

It is generally best to start with the app, and then use the app to automatically generate command-
line scripts. Before using either method, first define the problem by selecting a data set. Each of the
neural network apps has access to many sample data sets that you can use to experiment with the
toolbox (see “Sample Data Sets for Shallow Neural Networks” on page 1-113). If you have a specific
problem that you want to solve, you can load your own data into the workspace. The next section
describes the data format.

Tip To interactively build and train deep networks, use Deep Network Designer.

Defining a Problem
To define a pattern recognition problem, arrange a set of input vectors (predictors) as columns in a
matrix. Then arrange another set of response vectors indicating the classes to which the observations
are assigned.

When there are only two classes, each response has two elements, 0 and 1, indicating which class the
corresponding observation belongs to. For example, you can define a two-class classification problem
as follows:

predictors = [7 10 3 1 6; 5 8 1 1 6; 6 7 1 1 6];
responses = [0 0 1 1 0; 1 1 0 0 1];

The data consists of five observations, each with three features, classified into one of two classes.

When predictors are to be classified into N different classes, the responses have N elements. For each
response, one element is 1 and the others are 0. For example, the following lines show how to define
a classification problem that divides the corners of a 5-by-5-by-5 cube into three classes:

• The origin (the first input vector) in one class
• The corner farthest from the origin (the last input vector) in a second class
• All other points in a third class

predictors = [0 0 0 0 5 5 5 5; 0 0 5 5 0 0 5 5; 0 5 0 5 0 5 0 5];
responses = [1 0 0 0 0 0 0 0; 0 1 1 1 1 1 1 0; 0 0 0 0 0 0 0 1];

The data consists of eight observations, each with three features, classified into one of three classes.

 Classify Patterns with a Shallow Neural Network

1-63

The next section shows how to train a network to recognize patterns, using the Neural Net Pattern
Recognition app. This example uses an example data set provided with the toolbox.

Classify Patterns Using the Neural Net Pattern Recognition App

This example shows how to train a shallow neural network to classify patterns using the Neural Net
Pattern Recognition app.

Open the Neural Net Pattern Recognition app using nprtool.

nprtool

Select Data

The Neural Net Pattern Recognition app has example data to help you get started training a
neural network.

To import example glass classification data, select Import > Import Glass Data Set. You can use
this data set to train a neural network to classify glass as window or non-window, using properties of
the glass chemistry. If you import your own data from file or the workspace, you must specify the
predictors and responses, and whether the observations are in rows or columns.

1 Getting Started

1-64

Information about the imported data appears in the Model Summary. This data set contains 214
observations, each with 9 features. Each observation is classified into one of two classes: window or
non-window.

Split the data into training, validation, and test sets. Keep the default settings. The data is split into:

• 70% for training.
• 15% to validate that the network is generalizing and to stop training before overfitting.
• 15% to independently test network generalization.

For more information on data division, see “Divide Data for Optimal Neural Network Training”.

Create Network

The network is a two-layer feedforward network with a sigmoid transfer function in the hidden layer
and a softmax transfer function in the output layer. The size of the hidden layer corresponds to the

 Classify Patterns with a Shallow Neural Network

1-65

number of hidden neurons. The default layer size is 10. You can see the network architecture in the
Network pane. The number of output neurons is set to 2, which is equal to the number of classes
specified by the response data.

Train Network

To train the network, click Train.

In the Training pane, you can see the training progress. Training continues until one of the stopping
criteria is met. In this example, training continues until the validation error increases consecutively
for six iterations ("Met validation criterion").

1 Getting Started

1-66

Analyze Results

The Model Summary contains information about the training algorithm and the training results for
each data set.

You can further analyze the results by generating plots. To plot the confusion matrices, in the Plots
section, click Confusion Matrix. The network outputs are very accurate, as you can see by the high
numbers of correct classifications in the green squares (diagonal) and the low numbers of incorrect
classifications in the red squares (off-diagonal).

 Classify Patterns with a Shallow Neural Network

1-67

View the ROC curve to obtain additional verification of network performance. In the Plots section,
click ROC Curve.

1 Getting Started

1-68

The colored lines in each axis represent the ROC curves. The ROC curve is a plot of the true positive
rate (sensitivity) versus the false positive rate (1 - specificity) as the threshold is varied. A perfect test
would show points in the upper-left corner, with 100% sensitivity and 100% specificity. For this
problem, the network performs very well.

If you are unhappy with the network performance, you can do one of the following:

• Train the network again.
• Increase the number of hidden neurons.
• Use a larger training data set.

If performance on the training set is good but the test set performance is poor, this could indicate the
model is overfitting. Reducing the number of neurons can reduce the overfitting.

 Classify Patterns with a Shallow Neural Network

1-69

You can also evaluate the network performance on an additional test set. To load additional test data
to evaluate the network with, in the Test section, click Test. The Model Summary displays the
additional test results. You can also generate plots to analyze the additional test results.

Generate Code

Select Generate Code > Generate Simple Training Script to create MATLAB code to reproduce
the previous steps from the command line. Creating MATLAB code can be helpful if you want to learn
how to use the command line functionality of the toolbox to customize the training process. In
“Classify Patterns Using Command-Line Functions” on page 1-70, you will investigate the generated
scripts in more detail.

Export Network

You can export your trained network to the workspace or Simulink®. You can also deploy the network
with MATLAB Compiler™ and other MATLAB code generation tools. To export your trained network
and results, select Export Model > Export to Workspace.

Classify Patterns Using Command-Line Functions
The easiest way to learn how to use the command-line functionality of the toolbox is to generate
scripts from the apps, and then modify them to customize the network training. As an example, look

1 Getting Started

1-70

at the simple script that was created in the previous section using the Neural Net Pattern
Recognition app.

% Solve a Pattern Recognition Problem with a Neural Network
% Script generated by Neural Pattern Recognition app
% Created 22-Mar-2021 16:50:20
%
% This script assumes these variables are defined:
%
% glassInputs - input data.
% glassTargets - target data.

x = glassInputs;
t = glassTargets;

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainscg'; % Scaled conjugate gradient backpropagation.

% Create a Pattern Recognition Network
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize, trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,x,t);

% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
tind = vec2ind(t);
yind = vec2ind(y);
percentErrors = sum(tind ~= yind)/numel(tind);

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotconfusion(t,y)
%figure, plotroc(t,y)

You can save the script and then run it from the command line to reproduce the results of the
previous training session. You can also edit the script to customize the training process. In this case,
follow each step in the script.

 Classify Patterns with a Shallow Neural Network

1-71

Select Data

The script assumes that the predictor and response vectors are already loaded into the workspace. If
the data is not loaded, you can load it as follows:

load glass_dataset

This command loads the predictors glassInputs and the responses glassTargets into the
workspace.

This data set is one of the sample data sets that is part of the toolbox. For information about the data
sets available, see “Sample Data Sets for Shallow Neural Networks” on page 1-113. You can also see
a list of all available data sets by entering the command help nndatasets. You can load the
variables from any of these data sets using your own variable names. For example, the command

[x,t] = glass_dataset;

will load the glass predictors into the array x and the glass responses into the array t.

Choose Training Algorithm

Define training algorithm.

trainFcn = 'trainscg'; % Scaled conjugate gradient backpropagation.

Create Network

Create the network. The default network for pattern recognition (classification) problems,
patternnet, is a feedforward network with the default sigmoid transfer function in the hidden layer,
and a softmax transfer function in the output layer. The network has a single hidden layer with ten
neurons (default).

The network has two output neurons, because there are two response values (classes) associated with
each input vector. Each output neuron represents a class. When an input vector of the appropriate
class is applied to the network, the corresponding neuron should produce a 1, and the other neurons
should output a 0.

hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize, trainFcn);

Note More neurons require more computation, and they have a tendency to overfit the data when
the number is set too high, but they allow the network to solve more complicated problems. More
layers require more computation, but their use might result in the network solving complex problems
more efficiently. To use more than one hidden layer, enter the hidden layer sizes as elements of an
array in the patternnet command.

Divide Data

Set up the division of data.

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

1 Getting Started

1-72

With these settings, the predictor vectors and response vectors are randomly divided, with 70% for
training, 15% for validation, and 15% for testing. For more information about the data division
process, see “Divide Data for Optimal Neural Network Training”.

Train Network

Train the network.

[net,tr] = train(net,x,t);

During training, the training progress window opens. You can interrupt training at any point by
clicking the stop button .

Training finished when the validation error increased consecutively for six iterations, which occurred
at iteration 14.

If you click Performance in the training window, a plot of the training errors, validation errors, and
test errors appears, as shown in the following figure.

In this example, the result is reasonable as the final cross-entropy error is small.

Test Network

Test the network. After the network has trained, you can use it to compute the network outputs. The
following code calculates the network outputs, errors, and overall performance.

y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)

performance =

 0.0659

You can also compute the fraction of misclassified observations. In this example, the model has a very
low misclassification rate.

 Classify Patterns with a Shallow Neural Network

1-73

tind = vec2ind(t);
yind = vec2ind(y);
percentErrors = sum(tind ~= yind)/numel(tind)

percentErrors =

 0.0514

It is also possible to calculate the network performance only on the test set, by using the testing
indices, which are located in the training record.

tInd = tr.testInd;
tstOutputs = net(x(:,tInd));
tstPerform = perform(net,t(tInd),tstOutputs)

tstPerform =

 2.0163

View Network

View the network diagram.

view(net)

Analyze Results

Use the plotconfusion function to plot the confusion matrix. You can also plot the confusion matrix
for each of the data sets by clicking Confusion in the training window.

1 Getting Started

1-74

figure, plotconfusion(t,y)

The diagonal green cells show the number of cases that were correctly classified, and the off-diagonal
red cells show the misclassified cases. The results show very good recognition. If you needed even
more accurate results, you could try any of the following approaches:

• Reset the initial network weights and biases to new values with init and train again.
• Increase the number of hidden neurons.
• Use a larger training data set.
• Increase the number of input values, if more relevant information is available.
• Try a different training algorithm (see “Training Algorithms”).

In this case, the network results are satisfactory, and you can now put the network to use on new
input data.

Next Steps

To get more experience in command line operations, here are some tasks you can try:

• During training, open a plot window (such as the confusion plot), and watch it animate.
• Plot from the command line with functions such as plotroc and plottrainstate.

Each time a neural network is trained can result in a different solution due to random initial weight
and bias values and different divisions of data into training, validation, and test sets. As a result,
different neural networks trained on the same problem can give different outputs for the same input.
To ensure that a neural network of good accuracy has been found, retrain several times.

There are several other techniques for improving upon initial solutions if higher accuracy is desired.
For more information, see “Improve Shallow Neural Network Generalization and Avoid Overfitting”.

 Classify Patterns with a Shallow Neural Network

1-75

See Also
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition | Neural Net
Clustering | trainscg

Related Examples
• “Fit Data with a Shallow Neural Network” on page 1-45
• “Cluster Data with a Self-Organizing Map” on page 1-77
• “Shallow Neural Network Time-Series Prediction and Modeling” on page 1-89

1 Getting Started

1-76

Cluster Data with a Self-Organizing Map
Clustering data is another excellent application for neural networks. This process involves grouping
data by similarity. For example, you might perform:

• Market segmentation by grouping people according to their buying patterns
• Data mining by partitioning data into related subsets
• Bioinformatic analysis by grouping genes with related expression patterns

Suppose that you want to cluster flower types according to petal length, petal width, sepal length,
and sepal width. You have 150 example cases for which you have these four measurements.

As with function fitting and pattern recognition, there are two ways to solve this problem:

• Use the Neural Net Clustering app, as described in “Cluster Data Using the Neural Net
Clustering App” on page 1-77.

• Use command-line functions, as described in “Cluster Data Using Command-Line Functions” on
page 1-83.

It is generally best to start with the app, and then use the app to automatically generate command-
line scripts. Before using either method, first define the problem by selecting a data set. Each of the
neural network apps has access to sample data sets that you can use to experiment with the toolbox
(see “Sample Data Sets for Shallow Neural Networks” on page 1-113). If you have a specific problem
that you want to solve, you can load your own data into the workspace. The next section describes the
data format.

Defining a Problem
To define a clustering problem, arrange input vectors (predictors) to be clustered as columns in an
input matrix. For instance, you might want to cluster this set of 10 two-element vectors:

predictors = [7 0 6 2 6 5 6 1 0 1; 6 2 5 0 7 5 5 1 2 2]

The next section shows how to train a network to cluster data, using the Neural Net Clustering
app. This example uses an example data set provided with the toolbox.

Cluster Data Using the Neural Net Clustering App

This example shows how to train a shallow neural network to cluster data using the Neural Net
Clustering app.

Open the Neural Net Clustering app using nctool.

nctool

 Cluster Data with a Self-Organizing Map

1-77

Select Data

The Neural Net Clustering app has example data to help you get started training a neural network.

To import the example iris flower clustering data, select Import > Import Iris Flowers Data Set. If
you import your own data from file or the workspace, you must specify the predictors and whether
the observations are in rows or columns.

1 Getting Started

1-78

Information about the imported data appears in the Model Summary. This data set contains 150
observations, each with four features.

Create Network

For clustering problems, the self-organizing feature map (SOM) is the most commonly used network.
This network has one layer, with neurons organized in a grid. Self-organizing maps learn to cluster
data based on similarity. For more information on the SOM, see “Cluster with Self-Organizing Map
Neural Network”.

To create the network, specify the map size, this corresponds to the number of rows and columns in
the grid. For this example, set the Map size value to 10, this corresponds to a grid with 10 rows and
10 columns. The total number of neurons is equal to the number of points in the grid, in this example,
the map has 100 neurons. You can see the network architecture in the Network pane.

 Cluster Data with a Self-Organizing Map

1-79

Train Network

To train the network, click Train. In the Training pane, you can see the training progress. Training
continues until one of the stopping criteria is met. In this example, training continues until the
maximum number of epochs is reached.

1 Getting Started

1-80

Analyze Results

To analyze the training results, generate plots. For SOM training, the weight vector associated with
each neuron moves to become the center of a cluster of input vectors. In addition, neurons that are
adjacent to each other in the topology should also move close to each other in the input space,
therefore it is possible to visualize a high-dimensional inputs space in the two dimensions of the
network topology. The default topology of the SOM is hexagonal.

To plot the SOM Sample Hits, in the Plots section, click Sample Hits. This figure shows the neuron
locations in the topology, and indicates how many of the observations are associated with each of the
neurons (cluster centers). The topology is a 10-by-10 grid, so there are 100 neurons. The maximum
number of hits associated with any neuron is 5. Thus, there are 5 input vectors in that cluster.

Plot the weight planes (also referred to as component planes). In the Plots section, click Weight
Planes. This figure shows a weight plane for each element of the input features (four, in this
example). The plot shows the weights that connect each input to each of the neurons, with darker

 Cluster Data with a Self-Organizing Map

1-81

colors representing larger weights. If the connection patterns of two features are very similar, you
can assume that the features are highly correlated.

If you are unhappy with the network performance, you can do one of the following:

• Train the network again. Each training will have different initial weights and biases of the
network, and can produce an improved network after retraining.

• Increase the number of neurons by increasing the map size.
• Use a larger training data set.

You can also evaluate the network performance on an additional test set. To load additional test data
to evaluate the network with, in the Test section, click Test. Generate plots to analyze the additional
test results.

Generate Code

Select Generate Code > Generate Simple Training Script to create MATLAB code to reproduce
the previous steps from the command line. Creating MATLAB code can be helpful if you want to learn

1 Getting Started

1-82

how to use the command-line functionality of the toolbox to customize the training process. In
“Cluster Data Using Command-Line Functions” on page 1-83, you will investigate the generated
scripts in more detail.

Export Network

You can export your trained network to the workspace or Simulink®. You can also deploy the network
with MATLAB Compiler™ tools and other MATLAB code generation tools. To export your trained
network and results, select Export Model > Export to Workspace.

Cluster Data Using Command-Line Functions
The easiest way to learn how to use the command-line functionality of the toolbox is to generate
scripts from the apps, and then modify them to customize the network training. As an example, look
at the simple script that was created in the previous section using the Neural Net Clustering app.

% Solve a Clustering Problem with a Self-Organizing Map
% Script generated by Neural Clustering app
% Created 21-May-2021 10:15:01
%
% This script assumes these variables are defined:

 Cluster Data with a Self-Organizing Map

1-83

%
% irisInputs - input data.

x = irisInputs;

% Create a Self-Organizing Map
dimension1 = 10;
dimension2 = 10;
net = selforgmap([dimension1 dimension2]);

% Train the Network
[net,tr] = train(net,x);

% Test the Network
y = net(x);

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotsomtop(net)
%figure, plotsomnc(net)
%figure, plotsomnd(net)
%figure, plotsomplanes(net)
%figure, plotsomhits(net,x)
%figure, plotsompos(net,x)

You can save the script and then run it from the command line to reproduce the results of the
previous training session. You can also edit the script to customize the training process. In this case,
follow each step in the script.

Select Data

The script assumes that the predictors are already loaded into the workspace. If the data is not
loaded, you can load it as follows:

load iris_dataset

This command loads the predictors irisInputs into the workspace.

This data set is one of the sample data sets that is part of the toolbox. For information about the data
sets available, see “Sample Data Sets for Shallow Neural Networks” on page 1-113. You can also see
a list of all available data sets by entering the command help nndatasets. You can load the
variables from any of these data sets using your own variable names. For example, the command

x = irisInputs;

will load the iris flower predictors into the array x.

Create Network

Create a network. For this example, you use a self-organizing map (SOM). This network has one layer,
with the neurons organized in a grid. For more information, see “Cluster with Self-Organizing Map
Neural Network”. When creating the network with selforgmap, you specify the number of rows and
columns in the grid.

1 Getting Started

1-84

dimension1 = 10;
dimension2 = 10;
net = selforgmap([dimension1 dimension2]);

Train Network

Train the network. The SOM network uses the default batch SOM algorithm for training.

[net,tr] = train(net,x);

During training, the training window opens and displays the training progress. You can interrupt
training at any point by clicking the stop button .

Test Network

Test the network. After the network has been trained, you can use it to compute the network outputs.

 Cluster Data with a Self-Organizing Map

1-85

y = net(x);

View Network

View the network diagram.

view(net)

Analyze Results

For SOM training, the weight vector associated with each neuron moves to become the center of a
cluster of input vectors. In addition, neurons that are adjacent to each other in the topology should
also move close to each other in the input space, therefore it is possible to visualize a high-
dimensional inputs space in the two dimensions of the network topology. The default SOM topology is
hexagonal; to view it, enter the following commands.

figure, plotsomtop(net)

1 Getting Started

1-86

In this figure, each of the hexagons represents a neuron. The grid is 10-by-10, so there are a total of
100 neurons in this network. There are four features in each input vector, so the input space is four-
dimensional. The weight vectors (cluster centers) fall within this space.

Because this SOM has a two-dimensional topology, you can visualize in two dimensions the
relationships among the four-dimensional cluster centers. One visualization tool for the SOM is the
weight distance matrix (also called the U-matrix).

To view the U-matrix, click SOM Neighbor Distances in the training window.

 Cluster Data with a Self-Organizing Map

1-87

In this figure, the blue hexagons represent the neurons. The red lines connect neighboring neurons.
The colors in the regions containing the red lines indicate the distances between neurons. The darker
colors represent larger distances, and the lighter colors represent smaller distances. A band of dark
segments crosses the map. The SOM network appears to have clustered the flowers into two distinct
groups.

Next Steps

To get more experience in command-line operations, try some of these tasks:

• During training, open a plot window (such as the SOM weight position plot) and watch it animate.
• Plot from the command line with functions such as plotsomhits, plotsomnc, plotsomnd,

plotsomplanes, plotsompos, and plotsomtop.

See Also
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition | Neural Net
Clustering | train

Related Examples
• “Fit Data with a Shallow Neural Network” on page 1-45
• “Classify Patterns with a Shallow Neural Network” on page 1-63
• “Shallow Neural Network Time-Series Prediction and Modeling” on page 1-89

1 Getting Started

1-88

Shallow Neural Network Time-Series Prediction and Modeling
Dynamic neural networks are good at time-series prediction. To see examples of using NARX
networks being applied in open-loop form, closed-loop form and open/closed-loop multistep
prediction, see “Multistep Neural Network Prediction”.

Tip For deep learning with time series data, see instead “Sequence Classification Using Deep
Learning”.

Suppose, for instance, that you have data from a pH neutralization process. You want to design a
network that can predict the pH of a solution in a tank from past values of the pH and past values of
the acid and base flow rate into the tank. You have a total of 2001 time steps for which you have those
series.

You can solve this problem in two ways:

• Use the Neural Net Time Series app, as described in “Fit Time Series Data Using the Neural
Net Time Series App” on page 1-90.

• Use command-line functions, as described in “Fit Time Series Data Using Command-Line
Functions” on page 1-98.

It is generally best to start with the app, and then use the app to automatically generate command-
line scripts. Before using either method, first define the problem by selecting a data set. Each of the
neural network apps has access to several sample data sets that you can use to experiment with the
toolbox (see “Sample Data Sets for Shallow Neural Networks” on page 1-113). If you have a specific
problem that you want to solve, you can load your own data into the workspace.

Time Series Networks
You can train a neural network to solve three types of time series problems.

NARX Network

In the first type of time series problem, you would like to predict future values of a time series y(t)
from past values of that time series and past values of a second time series x(t). This form of
prediction is called nonlinear autoregressive with exogenous (external) input, or NARX (see “Design
Time Series NARX Feedback Neural Networks”), and can be written as follows:

y(t) = f(y(t – 1), ..., y(t – d), x(t – 1), ..., (t – d))

Use this model to predict future values of a stock or bond, based on such economic variables as
unemployment rates, GDP, etc. You can also use this model for system identification, in which models
are developed to represent dynamic systems, such as chemical processes, manufacturing systems,
robotics, aerospace vehicles, etc.

NAR Network

In the second type of time series problem, there is only one series involved. The future values of a
time series y(t) are predicted only from past values of that series. This form of prediction is called
nonlinear autoregressive, or NAR, and can be written as follows:

y(t) = f(y(t – 1), ..., y(t – d))

 Shallow Neural Network Time-Series Prediction and Modeling

1-89

You can use this model to predict financial instruments, but without the use of a companion series.

Nonlinear Input-Output Network

The third time series problem is similar to the first type, in that two series are involved, an input
series x(t) and an output series y(t). Here you want to predict values of y(t) from previous values of
x(t), but without knowledge of previous values of y(t). This input/output model can be written as
follows:

y(t) = f(x(t – 1), ..., x(t – d))

The NARX model will provide better predictions than this input-output model, because it uses the
additional information contained in the previous values of y(t). However, there may be some
applications in which the previous values of y(t) would not be available. Those are the only cases
where you would want to use the input-output model instead of the NARX model.

Defining a Problem
To define a time series problem for the toolbox, arrange a set of time series predictor vectors as
columns in a cell array. Then, arrange another set of time series response vectors (the correct
response vectors for each of the predictor vectors) into a second cell array. Additionally, there are
cases in which you only need to have a response data set. For example, you can define the following
time series problem, in which you want to use previous values of a series to predict the next value:

responses = {1 2 3 4 5};

The next section shows how to train a network to fit a time series data set, using the Neural Net
Time Series app. This example uses example data provided with the toolbox.

Fit Time Series Data Using the Neural Net Time Series App

This example shows how to train a shallow neural network to fit time series data using the Neural
Net Time Series app.

Open the Neural Net Time Series app using ntstool.

ntstool

Select Network

You can use the Neural Net Time Series app to solve three different kinds of time series problems.

• In the first type of time series problem, you would like to predict future values of a time series y t
from past values of that time series and past values of a second time series x t . This form of
prediction is called nonlinear autoregressive network with exogenous (external) input, or NARX.

• In the second type of time series problem, there is only one series involved. The future values of a
time series y t are predicted only from past values of that series. This form of prediction is called
nonlinear autoregressive, or NAR.

• The third time series problem is similar to the first type, in that two series are involved, an input
series (predictors) x t and an output series (responses) y t . Here you want to predict values of
y t from previous values of x t , but without knowledge of previous values of y t .

For this example, use a NARX network. Click Select Network > NARX Network.

1 Getting Started

1-90

Select Data

The Neural Net Time Series app has example data to help you get started training a neural
network.

To import example pH neutralization process data, select Import > More Example Data Sets >
Import pH Neutralization Data Set. You can use this data set to train a neural network to predict
the pH of a solution using acid and base solution flow. If you import your own data from file or the
workspace, you must specify the predictors and responses.

Information about the imported data appears in the Model Summary. This data set contains 2001
time steps. The predictors have two features (acid and base solution flow) and the responses have a
single feature (solution pH).

Split the data into training, validation, and test sets. Keep the default settings. The data is split into:

• 70% for training.
• 15% to validate that the network is generalizing and to stop training before overfitting.
• 15% to independently test network generalization.

For more information on data division, see “Divide Data for Optimal Neural Network Training”.

Create Network

The standard NARX network is a two-layer feedforward network, with a sigmoid transfer function in
the hidden layer and a linear transfer function in the output layer. This network also uses tapped

 Shallow Neural Network Time-Series Prediction and Modeling

1-91

delay lines to store previous values of the x t and y t sequences. Note that the output of the NARX
network, y t , is fed back to the input of the network (through delays), since y t is a function of
y t–1 , y t–2 , . . . , y t–d . However, for efficient training this feedback loop can be opened.

Because the true output is available during the training of the network, you can use the open-loop
architecture shown below, in which the true output is used instead of feeding back the estimated
output. This has two advantages. The first is that the input to the feedforward network is more
accurate. The second is that the resulting network has a purely feedforward architecture, and
therefore a more efficient algorithm can be used for training. This network is discussed in more detail
in “Design Time Series NARX Feedback Neural Networks”.

The Layer size value defines the number of hidden neurons. Keep the default layer size, 10. Change
the Time delay value to 4. You might want to adjust these numbers if the network training
performance is poor.

You can see the network architecture in the Network pane.

1 Getting Started

1-92

Train Network

To train the network, select Train > Train with Levenberg-Marquardt. This is the default training
algorithm and the same as clicking Train.

Training with Levenberg-Marquardt (trainlm) is recommended for most problems. For noisy or
small problems, Bayesian Regularization (trainbr) can obtain a better solution, at the cost of taking
longer. For large problems, Scaled Conjugate Gradient (trainscg) is recommended as it uses
gradient calculations which are more memory efficient than the Jacobian calculations the other two
algorithms use.

In the Training pane, you can see the training progress. Training continues until one of the stopping
criteria is met. In this example, training continues until the validation error increases consecutively
for six iterations ("Met validation criterion").

Analyze Results

The Model Summary contains information about the training algorithm and the training results for
each data set.

 Shallow Neural Network Time-Series Prediction and Modeling

1-93

You can further analyze the results by generating plots. To plot the error autocorrelation, in the Plots
section, click Error Autocorrelation. The autocorrelation plot describes how the prediction errors
are related in time. For a perfect prediction model, there should only be one nonzero value of the
autocorrelation function, and it should occur at zero lag (this is the mean square error). This would
mean that the prediction errors were completely uncorrelated with each other (white noise). If there
was significant correlation in the prediction errors, then it should be possible to improve the
prediction - perhaps by increasing the number of delays in the tapped delay lines. In this case, the
correlations, except for the one at zero lag, fall approximately within the 95% confidence limits
around zero, so the model seems to be adequate. If even more accurate results were required, you
could retrain the network. This will change the initial weights and biases of the network, and may
produce an improved network after retraining.

1 Getting Started

1-94

View the input-error cross-correlation plot to obtain additional verification of network performance.
In the Plots section, click Input-Error Correlation. The input-error cross-correlation plot illustrates
how the errors are correlated with the input sequence x t . For a perfect prediction model, all of the
correlations should be zero. If the input is correlated with the error, then it should be possible to
improve the prediction, perhaps by increasing the number of delays in the tapped delay lines. In this
case, most of the correlations fall within the confidence bounds around zero.

 Shallow Neural Network Time-Series Prediction and Modeling

1-95

In the Plots section, click Response. This displays the outputs, responses (targets), and errors
versus time. It also indicates which time points were selected for training, testing, and validation.

1 Getting Started

1-96

If you are unhappy with the network performance, you can do one of the following:

• Train the network again.
• Increase the number of hidden neurons.
• Use a larger training data set.

If performance on the training set is good but the test set performance is poor, this could indicate the
model is overfitting. Decreasing the layer size, and therefore decreasing the number of neurons, can
reduce the overfitting.

You can also evaluate the network performance on an additional test set. To load additional test data
to evaluate the network with, in the Test section, click Test. The Model Summary displays the
additional test data results. You can also generate plots to analyze the additional test data results.

 Shallow Neural Network Time-Series Prediction and Modeling

1-97

Generate Code

Select Generate Code > Generate Simple Training Script to create MATLAB code to reproduce
the previous steps from the command line. Creating MATLAB code can be helpful if you want to learn
how to use the command-line functionality of the toolbox to customize the training process. In “Fit
Time Series Data Using Command-Line Functions” on page 1-98, you will investigate the generated
scripts in more detail.

Export Network

You can export your trained network to the workspace or Simulink®. You can also deploy the network
with MATLAB Compiler™ tools and other MATLAB code generation tools. To export your trained
network and results, select Export Model > Export to Workspace.

Fit Time Series Data Using Command-Line Functions
The easiest way to learn how to use the command-line functionality of the toolbox is to generate
scripts from the apps, and then modify them to customize the network training. As an example, look
at the simple script that was generated in the previous section using the Neural Net Time Series
app.

1 Getting Started

1-98

% Solve an Autoregression Problem with External Input with a NARX Neural Network
% Script generated by Neural Time Series app
% Created 13-May-2021 17:34:27
%
% This script assumes these variables are defined:
%
% phInputs - input time series.
% phTargets - feedback time series.

X = phInputs;
T = phTargets;

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.

% Create a Nonlinear Autoregressive Network with External Input
inputDelays = 1:4;
feedbackDelays = 1:4;
hiddenLayerSize = 10;
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares timeseries data for a particular network,
% shifting time by the minimum amount to fill input states and layer
% states. Using PREPARETS allows you to keep your original time series data
% unchanged, while easily customizing it for networks with differing
% numbers of delays, with open loop or closed loop feedback modes.
[x,xi,ai,t] = preparets(net,X,{},T);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,x,t,xi,ai);

% Test the Network
y = net(x,xi,ai);
e = gsubtract(t,y);
performance = perform(net,t,y)

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotresponse(t,y)
%figure, ploterrcorr(e)
%figure, plotinerrcorr(x,e)

 Shallow Neural Network Time-Series Prediction and Modeling

1-99

% Closed Loop Network
% Use this network to do multi-step prediction.
% The function CLOSELOOP replaces the feedback input with a direct
% connection from the output layer.
netc = closeloop(net);
netc.name = [net.name ' - Closed Loop'];
view(netc)
[xc,xic,aic,tc] = preparets(netc,X,{},T);
yc = netc(xc,xic,aic);
closedLoopPerformance = perform(net,tc,yc)

% Step-Ahead Prediction Network
% For some applications it helps to get the prediction a timestep early.
% The original network returns predicted y(t+1) at the same time it is
% given y(t+1). For some applications such as decision making, it would
% help to have predicted y(t+1) once y(t) is available, but before the
% actual y(t+1) occurs. The network can be made to return its output a
% timestep early by removing one delay so that its minimal tap delay is now
% 0 instead of 1. The new network returns the same outputs as the original
% network, but outputs are shifted left one timestep.
nets = removedelay(net);
nets.name = [net.name ' - Predict One Step Ahead'];
view(nets)
[xs,xis,ais,ts] = preparets(nets,X,{},T);
ys = nets(xs,xis,ais);
stepAheadPerformance = perform(nets,ts,ys)

You can save the script, and then run it from the command line to reproduce the results of the
previous app session. You can also edit the script to customize the training process. In this case,
follow each of the steps in the script.

Select Data

The script assumes that the predictor and response vectors are already loaded into the workspace. If
the data is not loaded, you can load it as follows:

load ph_dataset

This command loads the predictors pHInputs and the responses pHTargets into the workspace.

This data set is one of the sample data sets that is part of the toolbox. For information about the data
sets available, see “Sample Data Sets for Shallow Neural Networks” on page 1-113. You can also see
a list of all available data sets by entering the command help nndatasets. You can load the
variables from any of these data sets using your own variable names. For example, the command

[X,T] = ph_dataset;

will load the pH data set predictors into the cell array X and the pH data set responses into the cell
array T.

Choose Training Algorithm

Define training algorithm. The network uses the default Levenberg-Marquardt algorithm (trainlm)
for training.

trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.

1 Getting Started

1-100

For problems in which Levenberg-Marquardt does not produce as accurate results as desired, or for
large data problems, consider setting the network training function to Bayesian Regularization
(trainbr) or Scaled Conjugate Gradient (trainscg), respectively, with either

net.trainFcn = 'trainbr';
net.trainFcn = 'trainscg';

Create Network

Create a network. The NARX network, narxnet, is a feedforward network with the default tan-
sigmoid transfer function in the hidden layer and linear transfer function in the output layer. This
network has two inputs. One is an external input, and the other is a feedback connection from the
network output. After the network has been trained, this feedback connection can be closed, as you
will see at a later step. For each of these inputs, there is a tapped delay line to store previous values.
To assign the network architecture for a NARX network, you must select the delays associated with
each tapped delay line, and also the number of hidden layer neurons. In the following steps, you
assign the input delays and the feedback delays to range from 1 to 4 and the number of hidden
neurons to be 10.

inputDelays = 1:4;
feedbackDelays = 1:4;
hiddenLayerSize = 10;
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn);

Note Increasing the number of neurons and the number of delays requires more computation, and
this has a tendency to overfit the data when the numbers are set too high, but it allows the network to
solve more complicated problems. More layers require more computation, but their use might result
in the network solving complex problems more efficiently. To use more than one hidden layer, enter
the hidden layer sizes as elements of an array in the narxnet command.

Prepare Data for Training

Prepare the data for training. When training a network containing tapped delay lines, it is necessary
to fill the delays with initial values of the predictors and responses of the network. There is a toolbox
command that facilitates this process - preparets. This function has three input arguments: the
network, the predictors, and the responses. The function returns the initial conditions that are
needed to fill the tapped delay lines in the network, and modified predictor and response sequences,
where the initial conditions have been removed. You can call the function as follows:

[x,xi,ai,t] = preparets(net,X,{},T);

Divide Data

Set up the division of data.

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

With these settings, the data will be randomly divided, with 70% used for training, 15% for validation,
and 15% for testing.

Train Network

Train the network.

 Shallow Neural Network Time-Series Prediction and Modeling

1-101

[net,tr] = train(net,x,t,xi,ai);

During training, the following training window opens. This window displays the training progress and
allows you to interrupt training at any point by clicking the stop button .

1 Getting Started

1-102

This training stopped when the validation error increased consecutively for six iterations.

Test Network

Test the network. After the network has been trained, you can use it to compute the network outputs.
The following code calculates the network outputs, errors, and overall performance. Note that to
simulate a network with tapped delay lines, you need to assign the initial values for these delayed
signals. This is done with the input states (xi) and the layer states (ai) provided by preparets at an
earlier stage.

y = net(x,xi,ai);
e = gsubtract(t,y);
performance = perform(net,t,y)

performance =

 0.0042

View Network

View the network diagram.

view(net)

 Shallow Neural Network Time-Series Prediction and Modeling

1-103

Analyze Results

Plot the performance training record to check for potential overfitting.

figure, plotperform(tr)

1 Getting Started

1-104

This figure shows that training and validation errors decrease until the highlighted epoch. It does not
appear that any overfitting has occurred, because the validation error does not increase before this
epoch.

All of the training is done in open loop (also called series-parallel architecture), including the
validation and testing steps. The typical workflow is to fully create the network in open loop, and only
when it has been trained (which includes validation and testing steps) it is transformed to closed loop
for multistep-ahead prediction. Likewise, the R values in the Neural Net Times Series app are
computed based on the open-loop training results.

Closed Loop Network

Close the loop on the NARX network. When the feedback loop is open on the NARX network, it is
performing a one-step-ahead prediction. It is predicting the next value of y(t) from previous values of
y(t) and x(t). With the feedback loop closed, it can be used to perform multi-step-ahead predictions.
This is because predictions of y(t) will be used in place of actual future values of y(t). The following
commands can be used to close the loop and calculate closed-loop performance

netc = closeloop(net);
netc.name = [net.name ' - Closed Loop'];
view(netc)
[xc,xic,aic,tc] = preparets(netc,X,{},T);
yc = netc(xc,xic,aic);
closedLoopPerformance = perform(net,tc,yc)

 Shallow Neural Network Time-Series Prediction and Modeling

1-105

closedLoopPerformance =

 0.4014

1 Getting Started

1-106

Step-Ahead Prediction Network

Remove a delay from the network, to get the prediction one time step early.

nets = removedelay(net);
nets.name = [net.name ' - Predict One Step Ahead'];
view(nets)
[xs,xis,ais,ts] = preparets(nets,X,{},T);
ys = nets(xs,xis,ais);
stepAheadPerformance = perform(nets,ts,ys)

stepAheadPerformance =

 0.0042

 Shallow Neural Network Time-Series Prediction and Modeling

1-107

From this figure, you can see that the network is identical to the previous open-loop network, except
that one delay has been removed from each of the tapped delay lines. The output of the network is
then y(t + 1) instead of y(t). This may sometimes be helpful when a network is deployed for certain
applications.

1 Getting Started

1-108

Next Steps

If the network performance is not satisfactory, you could try any of these approaches:

• Reset the initial network weights and biases to new values with init and train again.
• Increase the number of hidden neurons or the number of delays.
• Use a larger training data set.
• Increase the number of input values, if more relevant information is available.
• Try a different training algorithm (see “Training Algorithms”).

To get more experience in command-line operations, try some of these tasks:

• During training, open a plot window (such as the error correlation plot), and watch it animate.
• Plot from the command line with functions such as plotresponse, ploterrcorr and

plotperform.

Each time a neural network is trained can result in a different solution due to random initial weight
and bias values and different divisions of data into training, validation, and test sets. As a result,
different neural networks trained on the same problem can give different outputs for the same input.
To ensure that a neural network of good accuracy has been found, retrain several times.

There are several other techniques for improving upon initial solutions if higher accuracy is desired.
For more information, see “Improve Shallow Neural Network Generalization and Avoid Overfitting”.

See Also
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition | Neural Net
Clustering | train | preparets | narxnet | closeloop | perform | removedelay

Related Examples
• “Fit Data with a Shallow Neural Network” on page 1-45
• “Classify Patterns with a Shallow Neural Network” on page 1-63
• “Cluster Data with a Self-Organizing Map” on page 1-77

 Shallow Neural Network Time-Series Prediction and Modeling

1-109

Train Shallow Networks on CPUs and GPUs
In this section...
“ Parallel Computing Toolbox ” on page 1-110
“Parallel CPU Workers” on page 1-110
“GPU Computing” on page 1-111
“Multiple GPU/CPU Computing” on page 1-111
“Cluster Computing with MATLAB Parallel Server” on page 1-111
“Load Balancing, Large Problems, and Beyond” on page 1-112

Parallel Computing Toolbox

Tip This topic describes shallow networks. For deep learning, see instead “Scale Up Deep Learning
in Parallel, on GPUs, and in the Cloud”.

Neural network training and simulation involves many parallel calculations. Multicore CPUs,
graphical processing units (GPUs), and clusters of computers with multiple CPUs and GPUs can all
take advantage of parallel calculations.

Together, Deep Learning Toolbox and Parallel Computing Toolbox enable the multiple CPU cores and
GPUs of a single computer to speed up training and simulation of large problems.

The following is a standard single-threaded training and simulation session. (While the benefits of
parallelism are most visible for large problems, this example uses a small dataset that ships with
Deep Learning Toolbox.)

[x, t] = bodyfat_dataset;
net1 = feedforwardnet(10);
net2 = train(net1, x, t);
y = net2(x);

Parallel CPU Workers
Intel® processors ship with as many as eight cores. Workstations with two processors can have as
many as 16 cores, with even more possible in the future. Using multiple CPU cores in parallel can
dramatically speed up calculations.

Start or get the current parallel pool and view the number of workers in the pool.

pool = gcp;
pool.NumWorkers

An error occurs if you do not have a license for Parallel Computing Toolbox.

When a parallel pool is open, set the train function’s 'useParallel' option to 'yes' to specify
that training and simulation be performed across the pool.

net2 = train(net1,x,t,'useParallel','yes');
y = net2(x,'useParallel','yes');

1 Getting Started

1-110

GPU Computing
GPUs can have thousands of cores on a single card and are highly efficient on parallel algorithms like
neural networks.

Use gpuDeviceCount to check whether a supported GPU card is available in your system. Use the
function gpuDevice to review the currently selected GPU information or to select a different GPU.

gpuDeviceCount
gpuDevice
gpuDevice(2) % Select device 2, if available

An “Undefined function or variable” error appears if you do not have a license for Parallel Computing
Toolbox.

When you have selected the GPU device, set the train or sim function’s 'useGPU' option to 'yes'
to perform training and simulation on it.

net2 = train(net1,x,t,'useGPU','yes');
y = net2(x,'useGPU','yes');

Multiple GPU/CPU Computing
You can use multiple GPUs for higher levels of parallelism.

After opening a parallel pool, set both 'useParallel' and 'useGPU' to 'yes' to harness all the
GPUs and CPU cores on a single computer. Each worker associated with a unique GPU uses that GPU.
The rest of the workers perform calculations on their CPU core.

net2 = train(net1,x,t,'useParallel','yes','useGPU','yes');
y = net2(x,'useParallel','yes','useGPU','yes');

For some problems, using GPUs and CPUs together can result in the highest computing speed. For
other problems, the CPUs might not keep up with the GPUs, and so using only GPUs is faster. Set
'useGPU' to 'only', to restrict the parallel computing to workers with unique GPUs.

net2 = train(net1,x,t,'useParallel','yes','useGPU','only');
y = net2(x,'useParallel','yes','useGPU','only');

Cluster Computing with MATLAB Parallel Server
MATLAB Parallel Server allows you to harness all the CPUs and GPUs on a network cluster of
computers. To take advantage of a cluster, open a parallel pool with a cluster profile. Use the
MATLAB Home tab Environment area Parallel menu to manage and select profiles.

After opening a parallel pool, train the network by calling train with the 'useParallel' and
'useGPU' options.

net2 = train(net1,x,t,'useParallel','yes');
y = net2(x,'useParallel','yes');

net2 = train(net1,x,t,'useParallel','yes','useGPU','only');
y = net2(x,'useParallel','yes','useGPU','only');

 Train Shallow Networks on CPUs and GPUs

1-111

Load Balancing, Large Problems, and Beyond
For more information on parallel computing with Deep Learning Toolbox, see “Shallow Neural
Networks with Parallel and GPU Computing”, which introduces other topics, such as how to manually
distribute data sets across CPU and GPU workers to best take advantage of differences in machine
speed and memory.

Distributing data manually also allows worker data to load sequentially, so that data sets are limited
in size only by the total RAM of a cluster instead of the RAM of a single computer. This lets you apply
neural networks to very large problems.

1 Getting Started

1-112

Sample Data Sets for Shallow Neural Networks
The Deep Learning Toolbox contains a number of sample data sets that you can use to experiment
with shallow neural networks. To view the data sets that are available, use the following command:

help nndatasets

 Neural Network Datasets

 Function Fitting, Function approximation and Curve fitting.

 Function fitting is the process of training a neural network on a
 set of inputs in order to produce an associated set of target outputs.
 Once the neural network has fit the data, it forms a generalization of
 the input-output relationship and can be used to generate outputs for
 inputs it was not trained on.

 simplefit_dataset - Simple fitting dataset.
 abalone_dataset - Abalone shell rings dataset.
 bodyfat_dataset - Body fat percentage dataset.
 building_dataset - Building energy dataset.
 chemical_dataset - Chemical sensor dataset.
 cho_dataset - Cholesterol dataset.
 engine_dataset - Engine behavior dataset.
 vinyl_dataset - Vinyl bromide dataset.

 Pattern Recognition and Classification

 Pattern recognition is the process of training a neural network to assign
 the correct target classes to a set of input patterns. Once trained the
 network can be used to classify patterns it has not seen before.

 simpleclass_dataset - Simple pattern recognition dataset.
 cancer_dataset - Breast cancer dataset.
 crab_dataset - Crab gender dataset.
 glass_dataset - Glass chemical dataset.
 iris_dataset - Iris flower dataset.
 ovarian_dataset - Ovarian cancer dataset.
 thyroid_dataset - Thyroid function dataset.
 wine_dataset - Italian wines dataset.
 digitTrain4DArrayData - Synthetic handwritten digit dataset for
 training in form of 4-D array.
 digitTrainCellArrayData - Synthetic handwritten digit dataset for
 training in form of cell array.
 digitTest4DArrayData - Synthetic handwritten digit dataset for
 testing in form of 4-D array.
 digitTestCellArrayData - Synthetic handwritten digit dataset for
 testing in form of cell array.
 digitSmallCellArrayData - Subset of the synthetic handwritten digit
 dataset for training in form of cell array.

 Clustering, Feature extraction and Data dimension reduction

 Sample Data Sets for Shallow Neural Networks

1-113

 Clustering is the process of training a neural network on patterns
 so that the network comes up with its own classifications according
 to pattern similarity and relative topology. This is useful for gaining
 insight into data, or simplifying it before further processing.

 simplecluster_dataset - Simple clustering dataset.

 The inputs of fitting or pattern recognition datasets may also clustered.

 Input-Output Time-Series Prediction, Forecasting, Dynamic modeling
 Nonlinear autoregression, System identification and Filtering

 Input-output time series problems consist of predicting the next value
 of one time series given another time series. Past values of both series
 (for best accuracy), or only one of the series (for a simpler system)
 may be used to predict the target series.

 simpleseries_dataset - Simple time series prediction dataset.
 simplenarx_dataset - Simple time series prediction dataset.
 exchanger_dataset - Heat exchanger dataset.
 maglev_dataset - Magnetic levitation dataset.
 ph_dataset - Solution PH dataset.
 pollution_dataset - Pollution mortality dataset.
 refmodel_dataset - Reference model dataset
 robotarm_dataset - Robot arm dataset
 valve_dataset - Valve fluid flow dataset.

 Single Time-Series Prediction, Forecasting, Dynamic modeling,
 Nonlinear autoregression, System identification, and Filtering

 Single time series prediction involves predicting the next value of
 a time series given its past values.

 simplenar_dataset - Simple single series prediction dataset.
 chickenpox_dataset - Monthly chickenpox instances dataset.
 ice_dataset - Global ice volume dataset.
 laser_dataset - Chaotic far-infrared laser dataset.
 oil_dataset - Monthly oil price dataset.
 river_dataset - River flow dataset.
 solar_dataset - Sunspot activity dataset

Notice that all of the data sets have file names of the form name_dataset. Inside these files will be
the arrays nameInputs and nameTargets. You can load a data set into the workspace with a
command such as

load simplefit_dataset

This will load simplefitInputs and simplefitTargets into the workspace. If you want to load
the input and target arrays into different names, you can use a command such as

[x,t] = simplefit_dataset;

1 Getting Started

1-114

This will load the inputs and targets into the arrays x and t. You can get a description of a data set
with a command such as

help maglev_dataset

See Also
Neural Net Fitting | Neural Net Clustering | Neural Net Pattern Recognition | Neural Net
Time Series

Related Examples
• “Fit Data with a Shallow Neural Network” on page 1-45
• “Classify Patterns with a Shallow Neural Network” on page 1-63
• “Cluster Data with a Self-Organizing Map” on page 1-77
• “Shallow Neural Network Time-Series Prediction and Modeling” on page 1-89

 Sample Data Sets for Shallow Neural Networks

1-115

Shallow Neural Networks Glossary

ADALINE Acronym for a linear neuron: ADAptive LINear Element.

adaption Training method that proceeds through the specified sequence of
inputs, calculating the output, error, and network adjustment for each
input vector in the sequence as the inputs are presented.

adaptive filter Network that contains delays and whose weights are adjusted after
each new input vector is presented. The network adapts to changes in
the input signal properties if such occur. This kind of filter is used in
long distance telephone lines to cancel echoes.

adaptive learning rate Learning rate that is adjusted according to an algorithm during
training to minimize training time.

architecture Description of the number of the layers in a neural network, each
layer's transfer function, the number of neurons per layer, and the
connections between layers.

backpropagation
learning rule

Learning rule in which weights and biases are adjusted by error-
derivative (delta) vectors backpropagated through the network.
Backpropagation is commonly applied to feedforward multilayer
networks. Sometimes this rule is called the generalized delta rule.

backtracking search Linear search routine that begins with a step multiplier of 1 and then
backtracks until an acceptable reduction in performance is obtained.

batch Matrix of input (or target) vectors applied to the network
simultaneously. Changes to the network weights and biases are made
just once for the entire set of vectors in the input matrix. (The term
batch is being replaced by the more descriptive expression
“concurrent vectors.”)

batching Process of presenting a set of input vectors for simultaneous
calculation of a matrix of output vectors and/or new weights and
biases.

Bayesian framework Assumes that the weights and biases of the network are random
variables with specified distributions.

BFGS quasi-Newton
algorithm

Variation of Newton's optimization algorithm, in which an
approximation of the Hessian matrix is obtained from gradients
computed at each iteration of the algorithm.

bias Neuron parameter that is summed with the neuron's weighted inputs
and passed through the neuron's transfer function to generate the
neuron's output.

bias vector Column vector of bias values for a layer of neurons.

Brent's search Linear search that is a hybrid of the golden section search and a
quadratic interpolation.

Glossary-1

cascade-forward
network

Layered network in which each layer only receives inputs from
previous layers.

Charalambous' search Hybrid line search that uses a cubic interpolation together with a type
of sectioning.

classification Association of an input vector with a particular target vector.

competitive layer Layer of neurons in which only the neuron with maximum net input
has an output of 1 and all other neurons have an output of 0. Neurons
compete with each other for the right to respond to a given input
vector.

competitive learning Unsupervised training of a competitive layer with the instar rule or
Kohonen rule. Individual neurons learn to become feature detectors.
After training, the layer categorizes input vectors among its neurons.

competitive transfer
function

Accepts a net input vector for a layer and returns neuron outputs of 0
for all neurons except for the winner, the neuron associated with the
most positive element of the net input n.

concurrent input vectors Name given to a matrix of input vectors that are to be presented to a
network simultaneously. All the vectors in the matrix are used in
making just one set of changes in the weights and biases.

conjugate gradient
algorithm

In the conjugate gradient algorithms, a search is performed along
conjugate directions, which produces generally faster convergence
than a search along the steepest descent directions.

connection One-way link between neurons in a network.

connection strength Strength of a link between two neurons in a network. The strength,
often called weight, determines the effect that one neuron has on
another.

cycle Single presentation of an input vector, calculation of output, and new
weights and biases.

dead neuron Competitive layer neuron that never won any competition during
training and so has not become a useful feature detector. Dead
neurons do not respond to any of the training vectors.

decision boundary Line, determined by the weight and bias vectors, for which the net
input n is zero.

delta rule See Widrow-Hoff learning rule.

delta vector The delta vector for a layer is the derivative of a network's output
error with respect to that layer's net input vector.

distance Distance between neurons, calculated from their positions with a
distance function.

distance function Particular way of calculating distance, such as the Euclidean distance
between two vectors.

Glossary

Glossary-2

early stopping Technique based on dividing the data into three subsets. The first
subset is the training set, used for computing the gradient and
updating the network weights and biases. The second subset is the
validation set. When the validation error increases for a specified
number of iterations, the training is stopped, and the weights and
biases at the minimum of the validation error are returned. The third
subset is the test set. It is used to verify the network design.

epoch Presentation of the set of training (input and/or target) vectors to a
network and the calculation of new weights and biases. Note that
training vectors can be presented one at a time or all together in a
batch.

error jumping Sudden increase in a network's sum-squared error during training.
This is often due to too large a learning rate.

error ratio Training parameter used with adaptive learning rate and momentum
training of backpropagation networks.

error vector Difference between a network's output vector in response to an input
vector and an associated target output vector.

feedback network Network with connections from a layer's output to that layer's input.
The feedback connection can be direct or pass through several layers.

feedforward network Layered network in which each layer only receives inputs from
previous layers.

Fletcher-Reeves update Method for computing a set of conjugate directions. These directions
are used as search directions as part of a conjugate gradient
optimization procedure.

function approximation Task performed by a network trained to respond to inputs with an
approximation of a desired function.

generalization Attribute of a network whose output for a new input vector tends to be
close to outputs for similar input vectors in its training set.

generalized regression
network

Approximates a continuous function to an arbitrary accuracy, given a
sufficient number of hidden neurons.

global minimum Lowest value of a function over the entire range of its input
parameters. Gradient descent methods adjust weights and biases in
order to find the global minimum of error for a network.

golden section search Linear search that does not require the calculation of the slope. The
interval containing the minimum of the performance is subdivided at
each iteration of the search, and one subdivision is eliminated at each
iteration.

gradient descent Process of making changes to weights and biases, where the changes
are proportional to the derivatives of network error with respect to
those weights and biases. This is done to minimize network error.

 Glossary

Glossary-3

hard-limit transfer
function

Transfer function that maps inputs greater than or equal to 0 to 1, and
all other values to 0.

Hebb learning rule Historically the first proposed learning rule for neurons. Weights are
adjusted proportional to the product of the outputs of pre- and
postweight neurons.

hidden layer Layer of a network that is not connected to the network output (for
instance, the first layer of a two-layer feedforward network).

home neuron Neuron at the center of a neighborhood.

hybrid bisection-cubic
search

Line search that combines bisection and cubic interpolation.

initialization Process of setting the network weights and biases to their original
values.

input layer Layer of neurons receiving inputs directly from outside the network.

input space Range of all possible input vectors.

input vector Vector presented to the network.

input weight vector Row vector of weights going to a neuron.

input weights Weights connecting network inputs to layers.

Jacobian matrix Contains the first derivatives of the network errors with respect to the
weights and biases.

Kohonen learning rule Learning rule that trains a selected neuron's weight vectors to take on
the values of the current input vector.

layer Group of neurons having connections to the same inputs and sending
outputs to the same destinations.

layer diagram Network architecture figure showing the layers and the weight
matrices connecting them. Each layer's transfer function is indicated
with a symbol. Sizes of input, output, bias, and weight matrices are
shown. Individual neurons and connections are not shown.

layer weights Weights connecting layers to other layers. Such weights need to have
nonzero delays if they form a recurrent connection (i.e., a loop).

learning Process by which weights and biases are adjusted to achieve some
desired network behavior.

learning rate Training parameter that controls the size of weight and bias changes
during learning.

learning rule Method of deriving the next changes that might be made in a network
or a procedure for modifying the weights and biases of a network.

Glossary

Glossary-4

Levenberg-Marquardt Algorithm that trains a neural network 10 to 100 times faster than the
usual gradient descent backpropagation method. It always computes
the approximate Hessian matrix, which has dimensions n-by-n.

line search function Procedure for searching along a given search direction (line) to locate
the minimum of the network performance.

linear transfer function Transfer function that produces its input as its output.

link distance Number of links, or steps, that must be taken to get to the neuron
under consideration.

local minimum Minimum of a function over a limited range of input values. A local
minimum might not be the global minimum.

log-sigmoid transfer
function

Squashing function of the form shown below that maps the input to
the interval (0,1). (The toolbox function is logsig.)

f (n) = 1
1 + e−n

Manhattan distance The Manhattan distance between two vectors x and y is calculated as

D = sum(abs(x-y))

maximum performance
increase

Maximum amount by which the performance is allowed to increase in
one iteration of the variable learning rate training algorithm.

maximum step size Maximum step size allowed during a linear search. The magnitude of
the weight vector is not allowed to increase by more than this
maximum step size in one iteration of a training algorithm.

mean square error
function

Performance function that calculates the average squared error
between the network outputs a and the target outputs t.

momentum Technique often used to make it less likely for a backpropagation
network to get caught in a shallow minimum.

momentum constant Training parameter that controls how much momentum is used.

mu parameter Initial value for the scalar µ.

neighborhood Group of neurons within a specified distance of a particular neuron.
The neighborhood is specified by the indices for all the neurons that
lie within a radius d of the winning neuron i*:

Ni(d) = {j,dij ≤ d}

net input vector Combination, in a layer, of all the layer's weighted input vectors with
its bias.

neuron Basic processing element of a neural network. Includes weights and
bias, a summing junction, and an output transfer function. Artificial
neurons, such as those simulated and trained with this toolbox, are
abstractions of biological neurons.

 Glossary

Glossary-5

neuron diagram Network architecture figure showing the neurons and the weights
connecting them. Each neuron's transfer function is indicated with a
symbol.

ordering phase Period of training during which neuron weights are expected to order
themselves in the input space consistent with the associated neuron
positions.

output layer Layer whose output is passed to the world outside the network.

output vector Output of a neural network. Each element of the output vector is the
output of a neuron.

output weight vector Column vector of weights coming from a neuron or input. (See also
outstar learning rule.)

outstar learning rule Learning rule that trains a neuron's (or input's) output weight vector
to take on the values of the current output vector of the postweight
layer. Changes in the weights are proportional to the neuron's output.

overfitting Case in which the error on the training set is driven to a very small
value, but when new data is presented to the network, the error is
large.

pass Each traverse through all the training input and target vectors.

pattern A vector.

pattern association Task performed by a network trained to respond with the correct
output vector for each input vector presented.

pattern recognition Task performed by a network trained to respond when an input vector
close to a learned vector is presented. The network “recognizes” the
input as one of the original target vectors.

perceptron Single-layer network with a hard-limit transfer function. This network
is often trained with the perceptron learning rule.

perceptron learning rule Learning rule for training single-layer hard-limit networks. It is
guaranteed to result in a perfectly functioning network in finite time,
given that the network is capable of doing so.

performance Behavior of a network.

performance function Commonly the mean squared error of the network outputs. However,
the toolbox also considers other performance functions. Type help
nnperformance for a list of performance functions.

Polak-Ribiére update Method for computing a set of conjugate directions. These directions
are used as search directions as part of a conjugate gradient
optimization procedure.

positive linear transfer
function

Transfer function that produces an output of zero for negative inputs
and an output equal to the input for positive inputs.

Glossary

Glossary-6

postprocessing Converts normalized outputs back into the same units that were used
for the original targets.

Powell-Beale restarts Method for computing a set of conjugate directions. These directions
are used as search directions as part of a conjugate gradient
optimization procedure. This procedure also periodically resets the
search direction to the negative of the gradient.

preprocessing Transformation of the input or target data before it is presented to the
neural network.

principal component
analysis

Orthogonalize the components of network input vectors. This
procedure can also reduce the dimension of the input vectors by
eliminating redundant components.

quasi-Newton algorithm Class of optimization algorithm based on Newton's method. An
approximate Hessian matrix is computed at each iteration of the
algorithm based on the gradients.

radial basis networks Neural network that can be designed directly by fitting special
response elements where they will do the most good.

radial basis transfer
function

The transfer function for a radial basis neuron is

radbas(n) = e−n2

regularization Modification of the performance function, which is normally chosen to
be the sum of squares of the network errors on the training set, by
adding some fraction of the squares of the network weights.

resilient
backpropagation

Training algorithm that eliminates the harmful effect of having a small
slope at the extreme ends of the sigmoid squashing transfer functions.

saturating linear
transfer function

Function that is linear in the interval (-1,+1) and saturates outside
this interval to -1 or +1. (The toolbox function is satlin.)

scaled conjugate
gradient algorithm

Avoids the time-consuming line search of the standard conjugate
gradient algorithm.

sequential input vectors Set of vectors that are to be presented to a network one after the
other. The network weights and biases are adjusted on the
presentation of each input vector.

sigma parameter Determines the change in weight for the calculation of the
approximate Hessian matrix in the scaled conjugate gradient
algorithm.

sigmoid Monotonic S-shaped function that maps numbers in the interval (-∞,∞)
to a finite interval such as (-1,+1) or (0,1).

simulation Takes the network input p, and the network object net, and returns
the network outputs a.

spread constant Distance an input vector must be from a neuron's weight vector to
produce an output of 0.5.

 Glossary

Glossary-7

squashing function Monotonically increasing function that takes input values between -∞
and +∞ and returns values in a finite interval.

star learning rule Learning rule that trains a neuron's weight vector to take on the
values of the current input vector. Changes in the weights are
proportional to the neuron's output.

sum-squared error Sum of squared differences between the network targets and actual
outputs for a given input vector or set of vectors.

supervised learning Learning process in which changes in a network's weights and biases
are due to the intervention of any external teacher. The teacher
typically provides output targets.

symmetric hard-limit
transfer function

Transfer that maps inputs greater than or equal to 0 to +1, and all
other values to -1.

symmetric saturating
linear transfer function

Produces the input as its output as long as the input is in the range -1
to 1. Outside that range the output is -1 and +1, respectively.

tan-sigmoid transfer
function

Squashing function of the form shown below that maps the input to
the interval (-1,1). (The toolbox function is tansig.)

f (n) = 1
1 + e−n

tapped delay line Sequential set of delays with outputs available at each delay output.

target vector Desired output vector for a given input vector.

test vectors Set of input vectors (not used directly in training) that is used to test
the trained network.

topology functions Ways to arrange the neurons in a grid, box, hexagonal, or random
topology.

training Procedure whereby a network is adjusted to do a particular job.
Commonly viewed as an offline job, as opposed to an adjustment made
during each time interval, as is done in adaptive training.

training vector Input and/or target vector used to train a network.

transfer function Function that maps a neuron's (or layer's) net output n to its actual
output.

tuning phase Period of SOFM training during which weights are expected to spread
out relatively evenly over the input space while retaining their
topological order found during the ordering phase.

underdetermined
system

System that has more variables than constraints.

unsupervised learning Learning process in which changes in a network's weights and biases
are not due to the intervention of any external teacher. Commonly

Glossary

Glossary-8

changes are a function of the current network input vectors, output
vectors, and previous weights and biases.

update Make a change in weights and biases. The update can occur after
presentation of a single input vector or after accumulating changes
over several input vectors.

validation vectors Set of input vectors (not used directly in training) that is used to
monitor training progress so as to keep the network from overfitting.

weight function Weight functions apply weights to an input to get weighted inputs, as
specified by a particular function.

weight matrix Matrix containing connection strengths from a layer's inputs to its
neurons. The element wi,j of a weight matrix W refers to the connection
strength from input j to neuron i.

weighted input vector Result of applying a weight to a layer's input, whether it is a network
input or the output of another layer.

Widrow-Hoff learning
rule

Learning rule used to train single-layer linear networks. This rule is
the predecessor of the backpropagation rule and is sometimes
referred to as the delta rule.

 Glossary

Glossary-9

	Getting Started
	Deep Learning Toolbox Product Description
	Get Started with Deep Network Designer
	Try Deep Learning in 10 Lines of MATLAB Code
	Classify Image Using Pretrained Network
	Get Started with Transfer Learning
	Create Simple Image Classification Network
	Create Simple Image Classification Network Using Deep Network Designer
	Create Simple Sequence Classification Network Using Deep Network Designer
	Shallow Networks for Pattern Recognition, Clustering and Time Series
	Shallow Network Apps and Functions in Deep Learning Toolbox
	Deep Learning Toolbox Applications
	Shallow Neural Network Design Steps

	Fit Data with a Shallow Neural Network
	Defining a Problem
	Fit Data Using the Neural Net Fitting App
	Fit Data Using Command-Line Functions

	Classify Patterns with a Shallow Neural Network
	Defining a Problem
	Classify Patterns Using the Neural Net Pattern Recognition App
	Classify Patterns Using Command-Line Functions

	Cluster Data with a Self-Organizing Map
	Defining a Problem
	Cluster Data Using the Neural Net Clustering App
	Cluster Data Using Command-Line Functions

	Shallow Neural Network Time-Series Prediction and Modeling
	Time Series Networks
	Defining a Problem
	Fit Time Series Data Using the Neural Net Time Series App
	Fit Time Series Data Using Command-Line Functions

	Train Shallow Networks on CPUs and GPUs
	Parallel Computing Toolbox
	Parallel CPU Workers
	GPU Computing
	Multiple GPU/CPU Computing
	Cluster Computing with MATLAB Parallel Server
	Load Balancing, Large Problems, and Beyond

	Sample Data Sets for Shallow Neural Networks

	Shallow Neural Networks Glossary

